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Abstract. Creative play requires a fertile but well-defined design space. This pa-
per describes a design process for creating three-dimensional virtual reality play
spaces that allow the development and exploration of social interactions and re-
lationships. The process was developed as part of a commercial research effort to
create an interactive virtual reality entertainment system that allows children to
engage in creative and constructive play within an established action/adventure
framework. The effort centres on designingAI characters for aconstructive nar-
rative. We claim that a behaviour-based architecture is an ideal starting point for
developing agents for such a process, but that its full realization requires addi-
tional architectural structures and methodological support for the design process.
In this paper, we describe a character architecture called Spark of Life (SoL). We
also propose a three-layer design process for producing fertile and æsthetic con-
structive narratives. Finally, we describe our experience in implementing these
ideals in an industrial setting.

Keywords: Design Team Methodology; Constructive Narrative; Personality and Ac-
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1 Introduction

“Like good improvisational theatre, cyberspace presents the opportunity for the audi-
ence to create its own characters and worlds, to write its own plots and stories, and
to essentially become the directors, producers, and actors within their own imaginary
worlds.” (Pearce, 1997, pp. 345) For this potential to be realized, there must be tools
for the creative design of personalities. One modern view of creativity is that of a Dar-
winian process, involving novel recombination of existing design elements (Simonton,
1997; Boden, 1987). Part of what makes creativity challenging in artificial intelligence
is that a single element of creative play often takes on multiple roles in such recombi-
nation. For example, a banana may be used as a telephone, bridging two or more rep-
resentational threads simultaneously. This is a problem not only for those planningAI



representations, but also for those employed in designing props for encouraging creative
play. The challenge of designing for creative play lies in providing a rich and interesting
design space without limiting the creative potential of participants’ experience in that
space.

One solution is to allow the players to become constructors of their own experience.
This idea has been explored to a much greater extent spatially than socially. Exam-
ples of primarily spatial games include InternetMUDs, games such as SimCity (Joffe
and Wright, 1989), and constructive toys, such as blocks or LEGO. Socially construc-
tive toys also exist, though in fewer variants. For example, role-playing games such as
Purple Moon’s ‘girl games’ (Cassell and Jenkins, 1998), give the player the objective to
find a place for the main character in an established society. The game Creatures (Grand
et al., 1997) allows a player to evolve a society. TheNICE project (Roussos et al., 1997)
allows children to construct virtual gardens in a multi-user virtual world where social
interaction with other “gardeners” is part of the world. However, none of these allow
the player to freely create characters and narratives of complex personal interactions.
This is partly because the right technology has not found its way into virtual worlds,
and partly because personality creation has not been explored in a sufficiently thorough
manner to allow developers to make the necessary off-the-shelf building blocks.

In this paper we describe a character-based approach to constructive narratives, and
a design process for constructing a play environment to support character-based creative
play. Designing such a system can in itself be a highly creative act, but it is particularly
challenging to do so in a way that allows users ample opportunity to express their own
creativity. The design process is separated into three levels:

1 A high, artistic design level for creating story and characters.
2 A middle, behaviour-based design level for creating personality in character agents.
3 A low, VR design level for basic capabilities and appearances.

In this paper, we primarily focus on the middle layer, which is the domain of theAI

technologist. This is the layer to which we, asAI developers, can make the most contri-
bution. In our experience, theAI engineer must not only master his or her own technical
problems, but also serve as an important facilitator for the overall project. TheAI com-
ponent connects the visions of the character design team to the reality of the virtual (or
possibly mechanical) world. TheAI engineers are consequently in the difficult position
of needing to understand and communicate the constraints of each end of the design to
the other, as well as understanding and communicating their own technical requirements
and capabilities.

We begin by describing Spark of Life (SoL), the architecture for virtual reality char-
acters we developed over the course of aVR entertainment project at LEGO Digital. SoL
combines two already establishedAI architectures, Ymir (Th́orisson, 1996, 1999) and
Edmund (Bryson and McGonigle, 1998; Bryson, 1999). We then describe the design
process outlined above in more detail. Finally, we illustrate the methodology with an
example drawn from the LEGO project, including lessons learned.



2 The Spark of Life (SoL) Character Architecture

2.1 Character Architecture and Constructive Narrative

Much research into agents for entertainment concentrates on the problem of combining
the concept of a script with the notion of autonomous, reactive characters (Hayes-Roth
and van Gent, 1997; Lester and Stone, 1997; André et al., 1998). Our constructive nar-
rative approach eliminates this problem by changing the top level creative design from a
script to acast of characters. This simplifies the task of the player by removing the need
for character addition, substitution, alteration, or removal. It has the penalty of remov-
ing a substantial element of narrative structure: a sequential order of events. However,
this problem has already been addressed by the creators of role-playing and adventure
games. Their solution is that plot, if desired, can be advanced by knowledgeable char-
acters, found objects, and revealed locations. Structure is produced through the use of
geographic space as well as character personalities. Personality traits such as loyalty,
contentment or agoraphobia can be used to maintain order despite a large cast of au-
tonomous character, by tying particular characters to particular locations. Developing
such characters requires an agent architecture powerful enough to support this com-
plexity. It also requires sufficient modularity to allow reasonably quick construction of
behaviour patterns. We claim that SoL has these qualities.

Most virtual reality agent architectures are fundamentally behaviour-based, and at
least partially reactive (see Sengers, 1998, for a recent review and critique). This is be-
cause the reactive, behaviour-basedAI revolution of the late 1980s (Kortenkamp et al.,
1998) was primarily the triumph of a design approach. Behaviour-basedAI is sim-
pler to design than a monolithic intelligence system because it allows the decomposi-
tion of intelligent behaviour into easy-to-program modules, with more localised control
structures. Specifying that the intelligence should also be reactive removes the complex
problems of learning and constructive planning from the agent. In spite of limiting the
potential complexity of the agent’s capabilities, the behaviour-based approach has been
more successful in achieving interesting, believable characters than any fully human-
specified or fully machine-learned approach simply because it empowers the human
designer.

The limitations of completely reactive systems have been widely recognised, and
are addressed in numerous architectures (see for example Hexmoor et al., 1997). Some
authors have proposed that the community has moved beyond both constructive and
reactive planning to a new dominant paradigm, situated planning (Levison, 1996; Ko-
rtenkamp et al., 1998). Situated planning architectures generally include reactive be-
haviours, pre-stored plans, elements of learning, and possibly constrained forms of on-
line planning. Two of the most popular architectures of this paradigm arePRS(Georgeff
and Lansky, 1987) and3T (Bonasso et al., 1997). Both of these have at their centre
a scripting language for allowing the specification of sequential and hierarchical be-
haviour structures. These structures provide additional information (in the form of in-
ternal state) for action selection in situations that might be perceptually identical. This
allows the situated planner greater behavioral flexibility than the fully reactive planner,
which is dependent on current sensing to select its next action. The script structures



also allow for the combination of simple behaviour elements into larger modular forms,
again simplifying the design task.

There are two sets of problems associated with using the established AI “complex
agent” architectures. One is getting the correct level of control for scripted personalities
or behaviours. PRS and its derivative architectures do not seem truly reactive enough
to support the abrupt and frequent changes in context possible in a play scenario. The
“reactive” elements of PRS is constrained to switching in new, complete plans in ex-
ceptional circumstances—for example if a fire alarm has sounded (Bryson and Stein,
2001). When working with children, a more consistent sort of responsiveness is required
in order to respond to unexpected assistance or interruption by the child. These events
are more likely require movement within the same script than restarting or changing
scripts. On the other hand, more purely reactive architectures such as production sys-
tems or Soar (Newell, 1990) make scripting coherent behaviour very difficult.

The other set of problems is associated with the technical difficulties of controlling
a real-time multi-modal VR system. Very few AI architectures support the millisecond
precision and modality coordination necessary for believable, engaging real-time in-
teractions. These concerns are critical for all VR, but are particularly apparent when
dealing with dialogue and gesture (Thórisson, 1998).

2.2 Spark of Life

Our solution for these problems was to develop a new architecture, Spark of Life
(SoL). SoL merges features from two prior architectures developed by the authors, Ymir
(Thórisson, 1996, 1999) and Edmund (Bryson and McGonigle, 1998; Bryson, 2000),
which each address one of the sets of constraints outlined in the previous section.

Ymir is a highly modular, hybrid architecture which combines features from classi-
cal and behaviour-basedAI , and provides a system that can simulate in great detail the
psychosocial dialogue skills of humans. Real-time, face-to-face dialogue encompasses
a broad range of perceptual, cognitive and action requirements. Ymir addresses these
phenomena, including natural language and multi-modal input and output (facial ex-
pression, gesture, speech, body language), load-balanced handling of time (from short
reactive behaviours like fixation control to the execution of several seconds of multi-
modal actions), and employs a modular approach that enables the creation of complex,
human-like behaviour.

Edmund is also a hybrid behaviour-based architecture, which emphasises the inte-
gration of semi-autonomous behaviours which govern sensing, acting and learning. This
integration is done by a specialised module for situated or reactive planning. Edmund
at its associated methodology, Behaviour Oriented Design (BOD), allow designers to
iteratively develop both the perception/action modules that controlhow behaviour is
expressed and the plan scripts that determinewhenit is expressed. Edmund allows de-
signers to specify complex, even contradictory motivational structure for a creature, the
way those motivations are met, and the circumstances under which they are expressed.

The main strength of the behaviour-based paradigm is is modularity. Because Ed-
mund and Ymir were both behaviour-based and have complementary strengths, we were
able to combine them into single, powerful architecture, SoL. SoL encompasses the
following capabilities: multi-modal perception and action, real-time speech input and



output, memory, and planning. SoL’s modularity combined with robust, simple control
makes it ideal for constructive play by allowing for easy additions and modifications.

The rest of this section details the attributes of SoL, as they derive from Edmund
and Ymir. We particularly emphasise aspects that relate to the design methodology
described in the remainder of the paper. We also describe an iterative methodology for
designing the modules and plans that make up a particular character.

2.3 Edmund’s Contributions to SoL

Behaviour-basedAI simplifies design and increases responsiveness in complex intelli-
gent agents by decomposing intelligence into specialised modules orbehaviours. Be-
haviours autonomously control a particular sort of action, such as walking or laughing,
providing not only motor competence, but whatever sensing and perception is necessary
for their appropriate expression. Although this decomposition simplifies the design of
individual actions, it increases the complexity of coordinating behaviour in a coherent
manner. This problem is known as behaviour arbitration, a special case of the problem
of action selection.

Edmund utilises Parallel-rooted, Ordered, Slip-stack Hierarchical (POSH) action se-
lection.POSHaction selection allows for persistent, rational-appearing behaviour to be
generated through the appropriate attention to a task, while at the same time allow-
ing for the specification of triggers, drives and higher-level goals which can distract or
interrupt an agent, allowing it to remain broadly reactive.POSHaction selection is spec-
ified through scripts representing reactive plans. The most primitive elements of these
scripts are action and sensing interfaces to the agent’s behaviours. Edmund’s scripting
language provides for three levels of control structure above these primitives. First is the
action pattern, a simple sequence which runs uninterrupted except in the case of radi-
cal failure or severe high-level attention disruption (described below). The second is a
competence. A competence consists of a prioritised set of elements, whose behaviour
tends to converge towards the highest priority element, the goal. When a competence
is active, it selects the highest priority element which is currently capable of being ex-
ecuted. If that element is the goal the competence finishes successfully, if no elements
fire the competence fails. Their elements may consist of either behaviour primitives,
action patterns or other competences.

The highest level control of an Edmund script is a special form of competence called
a drive collection. The elements of a drive collection provide the activation or motiva-
tion for some coherent section of the script. A drive collection’s elements, while priori-
tised like a competence, may also be scheduled. Thus if a high priority element has fired
recently, it may be inhibited in order to allow lower priority elements to execute. Drives
also maintain overall behaviour coherence by being persistent. As described above,
competences and action patterns both terminate routinely. Further, if a competence se-
lects an element which is itself a competence, the parent competence is replaced by its
child in the action scheduling. This feature is called aslip-stack hierarchy, and allows
for indefinite behaviour chaining or looping. A drive always remembers the root of its
behaviour hierarchy. If a long chain does terminate, the drive returns its attention to the
root starting point.



For an example of a competence, think of a character that needs to drink out of a
particular sort of chalice. A high-level competence for this problem might look roughly
like this:

1 (holding chalice) (touching held-object mouth)goal
2 (holding chalice) drink-from-cup
3 (see chalice) grasp-attended-object
4 (desire chalice) find-attended-object

Conditions are on the left, goals on the right. For each concept, the highest priority
element for which its preconditions indicate it can fire, will fire. For most competences,
the highest priority element (1) recognises when the goal condition has been met: in
this case when the chalice is at the lips of the character. If the goal has not been met but
the character is holding a chalice, this competence will simply direct the character to
perform a primitive drinking motion by selecting 2. If the character is not yet holding
the chalice, but is within line-of-sight of it, it will attempt to grasp the object, as directed
by 3. In this case, “grasp-attended-object” would almost certainly be another compe-
tence, since the agent may have to move itself to within reach of the object, which may
in itself be a complicated maneuver. Control attention for the drive would temporar-
ily switch to the competence specified by 3, but when that competence completes, the
parent drive of the drinking competence will return attention to this plan.

The competence is a basic sort of reactive plan. Reactive plans are structures which
allow an agent to determine what to do next simply by taking into account the internal
context which is tracked by the plan and the external context which is provided by
perception. Many different action sequences can be generated by single reactive plan
responding to different contexts. A competence can be opportunistic — if the agent
is handed a chalice while it had been seeking it, it will immediately drink from it.
The agent will skip the grasping step, because it’s plan will recognise the new context.
Similarly, if the grasp fails for some reason, or another character takes the chalice,
then steps 3 or even 4 can be repeated as needed. The competence will fail if none of
the actions can trigger. This allows for a measure of self-control — the desire for the
chalice not only marks an internal deictic reference so that the general primitive “find-
attended-object” can operate, it might also monitor the character’s frustration level. If
the character cannot find or grasp the chalice over time, the desire predicate can fail,
allowing an alternate competence to operate.

For an example of a slip-stack hierarchy, consider that a bat may have two typical
behaviours which can never be expressed at the same time:orbiting which is flying
around the outside of a tower, andattackingwhich means swooping towards a person
inside a room. Because of the slip-stack mechanism, it is possible for theorbiting com-
petence to contain an element that specifies thatif the bat is called by another character
thenit switches to theattackmode, while at the same time theattackcompetence may
have a precondition that results in the bat returning toorbit.

Because no stack is maintained, this chain may be looped indefinitely or abandoned
when a competence fails, but there will be no break or delay in the bat’s behaviour.
The return to the root facilitates coherent as well as reactive behaviour. Each element
of a drive collection is persistent. If a competence terminates, the drive element that



was attending to it switches attention to its original, ancestral root. If the environmental
context has not changed much, then attention will again pass to the parent of that com-
petence. The parent is then free to examine the environment and determine whether
to execute the competence again, or whether one of its own higher priority elements
can now fire, and its own plan progress. In the chalice example, this would be the case
if the competence for grasping-attended-object completed. The drinking competence,
once attention had returned to it, would then be able to sense whether it was holding the
chalice, in which case it would proceed to drink, or whether it was not, in which case it
would attempt the grasp again.

Experiments comparing Edmund’sPOSH approach to action selection with other
reactive and behaviour-based architectures show Edmund’s advantages over purely re-
active approaches (Bryson, 1999). Experiments have also demonstrated its ability to
control real-time, multi-modal sensing and action on a mobile robot (Bryson and Mc-
Gonigle, 1998). However, Edmund had not previously been applied to a problem of
the complexity of a virtual reality character capable of full-scale, multi-modal natural
language dialog. Such complexity and specialisation requires additional architectural
support beyond Edmund’s design.

2.4 Ymir’s Contribution to SoL

Getting a synthetic character to engage in real-time dialogue with a human requires
coordination of complex sensory processing and multi-modal action generation on a
broad range of time scales, from gaze control (100-200 msec) to telling stories (min-
utes, hours). Ymir is a general-purpose architecture for orchestrating perceptual, deci-
sion, cognition and action processes for just such a purpose. Thórisson (1996) presents
an implementation of Ymir capable of knowledge-based dialogue skills, world knowl-
edge, and mechanisms for managing the sensory systems and motor control of multiple
modes in situated dialogue. In SoL, Ymir provides the architectural framework, and
supplies many general routines for dialogue processing, including a symbolic, frame-
based mechanism for natural language understanding.

The segmentation of perception and action in Ymir is finer than in most behaviour-
based systems (including Edmund), providing separate module types for decision, per-
ception, knowledge and action. Context-dependent perception-action loops as short as
100 msec are supported, and Ymir’s mechanisms provide a framework for short-term
planning from 100 msec up to roughly 2 seconds, with special focus on motor control
in communicative action. Edmund’s more general-purpose, and longer-term planning
structure is therefore a strong complement to these functionalities.

Ymir’s action generation is compositional: Movement morphology is composed of
a collection of movement elements, each consisting again of a collection of smaller
elements, etc., effectively instantiating a tree where the leafs represent the movement
of single motors or muscles for a given duration of time. These segments, and their
composition, is chosen at run-time based on a number of factors (e.g. the current state
of the agent’s body) according to compositional rules. Given a rich Motor Lexicon
(see below), the result of this system is that the exact form of an agent’s behaviour
never happens in quite the same way twice. A fine-grain control of an agent’s behaviour
in the time domain, combined with the compositional nature of its actions, make it



highly responsive to external events. To take a hypothetical (but realistic) example, a
user points at a location in space (t=0 msec). The the agent recognises the gesture first
as a communicative gesture (t=200 msec), and then as a deictic gesture (t=300 msec),
and starts planning a gaze and/or head movement in the direction pointed (t=350 msec).
If the user retracts the gesture and looks back at the agent (t=500 msec) just as the agent
starts to execute the gaze action, and the agent recognises this (t=600 msec), the plan
may be cancelled within 100 msec of the recognition of the gesture retraction (t=800
msec). Alternatively, if the human doesn’t retract the hand in this example, the agent
starts to look in the direction pointed less than half a second after the deictic gesture
started. Mimicking human perceptual and motor dialogue behaviour at this fine level of
granularity makes for very life-like, responsive agents.

Ymir has been tested in an interactive, conversational system (Thórisson, 1996; Cas-
sell and Th́orisson, 1999). Results show the behaviour patterns generated by Ymir in
real-time interaction with people to be comparable to task-oriented dialogue between
humans, and users rate its performance to be very believable (Thórisson, 1998, 1996).
Detailed explanation of the motor planning and control in Ymir has already been pub-
lished (Th́orisson, 1997). Th́orisson (2001) explains some of the perceptual mecha-
nisms in the first prototype of Ymir, such as real-time intonation analysis and vision.

The six main types of elements in Ymir are:

1. Perception: A set of Unimodal Perceptors, and Multi-Modal Integrators.

2. Decision: A set of Deciders, overt and covert.

3. Action: A set of Action nodes (also called ‘behaviours’ in prior publications; we
use ‘action’ to avoid confusing these with the larger, more involved Behaviours
in Edmund) and Action Morphologies - the lowest-level motor programs in the
system.

4. Intermodule communication: A set of Blackboards.

5. Knowledge: A Dialogue Knowledgebase module, and a set of Topic Knowledge-
base modules.

6. Organisation: Four semi-independent process collections: three perception-decision
layers, containing Unimodal Perceptors and Multi-Modal Integrators, and an Ac-
tion Scheduler that operates on Action nodes.

The three perception-decision layers group together perception and decision mod-
ules with common time dependencies, in order to load-balance process execution at
run-time and sort decisions into high, medium and low priority for execution. Multi-
modal sensory data can flow in to all layers, though not all data is relevant everywhere.
Ymir can accommodate any number of modules — action, perception, decision, plan-
ning, and knowledge — and they can be added incrementally, since all control and
information flow happens via message passing through Blackboards. Blackboards thus
allow communication between the modules, both within and between process collec-
tions. The Edmund planning mechanism was fitted into Ymir’s architecture using the
basic modules of Ymir, greatly extending the power of the original implementation
without introducing new modules or changing the way they communicate.



2.5 Real-Time Planning in Ymir and SoL

Typically, control of and Ymir agent is non-deterministic. That is, the results of events
are not guaranteed since they take into account unpredictable local and global delays
and system load at all levels of processing. Perception modules produce intermediate
and final data reports, posted to blackboards over time, which contain results such as
direction of gaze (of user), the agent’s own position in space, user’s gestures, facial ex-
pressions, prosody, and words spoken. An example of an intermediate perceptual result
is the classification of an arm movement as communicative. Knowledge processes piece
these perceptual data reports together to come up with a meaning of user’s behaviour.
The status of the knowledge processing is intermittently reported to the blackboards
as well, providing the rest of the system with information about the state of this more
complex — and therefore more time consuming — processing.

The perceptual and knowledge data reports are read by decision modules, which
decide what to do from moment to moment based on the perceptual state, as well as in-
ternal processing states and interpretation of the user’s speech, prosody, body language
and gesture. Decisions can be either overt or covert. Covert decisions concern strate-
gically turning sub-systems on and off, and initiating complex, goal-initiated internal
computation such as “parse-speech-input-now” and “look-for-deictic-referent-in-gaze-
stream”. Overt decisions become Motor Act Requests, which may or may not result in
outward behaviour of the agent. The expression of overt decisions is determined by the
Action Scheduler.

The Action Scheduler receives Motor Action Requests, e.g. “nod” or “smile”, from
deciders and from Edmund’s Competences. Motor Action Requests are “intentions” to
perform specific acts; the Acts can be executed in many ways by the Action Scheduler
by selecting from alternatives stored in a Motor Lexicon. The Motor Lexicon is con-
structed as an AND-OR tree. The tree combines the idea of stored postures with the idea
of hierarchical storage of increasingly smaller, and more detailed units. This method for
representing motor control leads to a database where functional (e.g. “show-happiness”)
and morphological (e.g. “smile”) definitions of motion co-exist in the same space, with
no need for distinct division lines between the two classes. This is powerful because
it allows a designer of decisions to access any behaviour node with a simple reference
(e.g. “blink-once”, or “smile”), and allows for very rapid construction of other modules,
once the Motor Lexicon has been created. The structure of the lexicon also allows it to
be extended iteratively. Extensions to the Motor Lexicon will enrich the expression of
established Acts without altering the representations in the Deciders or reactive plans.

Once an Act has been turned into motor events by a lookup to the Lexicon, the
Action Scheduler executes the events in increments of 100 ms. In the current imple-
mentation a graphics system receives output from the Action Scheduler and controls
addressable motors with relative positions for a number of control points that link to the
character’s anatomy, in our case creatures with up to 10 degree-of-freedom movement.
For example, to move the left wing upwards, the motor controlling the wing motion will
be moved to position 0 (all the way up) in a given time (performance duration). The full
command to the animation system may look something like this: (Motor:LeftWing; Po-
sition: 0; Time: 500msec). When executed, the Action Scheduler creates 5 slices from
this motor event, each taking 100 msec to perform.



2.6 Modularity and Constructive Narrative Characters

The explicit separation of decisions (via decision modules) and perception (via percep-
tion modules) has several advantages, the primary ones being simplicity of construction
and easy re-use of functionality. For example, perceptual data already produced by a
collection of perception modules may be re-used for a new decision, given that it is
relevant. Any Action already created can be triggered (requested) by a newly created
decision module under different circumstances, e.g. a “nod” action may be triggered
when the agent complies with a request, but also when the agent acknowledges that its
name has been uttered by the user. This makes the architecture particularly well-suited
to construction, since decision modules are really just a link between perception and
action; as long as an agent or creature has a sufficient perception and action repertoire,
a child constructing the mind of an agent can do so by hooking together the perceptions
and actions via decider modules, using simple rules.

Another feature particularly relevant to playful worlds is a mind’s control from the
outside: Events in the world (represented both symbolically or metrically) can have
direct influence on the creatures’ minds. A creature can be given virtual ESP by con-
necting outside events directly to its decision processes. Outside events can also be con-
nected directly to the knowledge structure, leaving the decision mechanism untouched.
A creature with such virtual ESP could tell children about things that are happening in
a remote part of the world as they speak. The same feature allows easy remote control
of creatures, either at the lowest motor level or at a more abstract level, using buttons
labelled with “smile”, “show anger”, “bid-farewell”, etc. A separate representation of
motor behaviour patterns allows the addition of knowledge and decision mechanisms
that access motor patterns already created, at a high level, allowing “plugging” and “un-
plugging” of knowledge, such that a player can give a creature the ability to tell stories
by simply plugging in the story telling module.

We believe that the combination of Ymir and Edmund is ideal because it addresses
a broad range of behavioral phenomena - psychosocial dialogue skills, 3D navigation,
planning, natural language, vision, and more - all of which are prime candidates for free
play. It is extremely well-suited to construction because of its modular nature.

Integrating Edmund and Ymir into SoL was very easy because both architectures are
behaviour based and implement forms of reactive planning. Although Edmund supports
coherent behaviour, reactive plans expect the unexpected in both the environment and in
the agent’s own performance. Such considerations are necessary in Edmund’s original
domain of robotics, because of the unreliability of mechanical actuation. Consequently,
the non-determinism of Ymir’s plan execution posed no problems for Edmund’sPOSH

plan structure. Similarly, Ymir’s plan representation structure was more than adequate
to represent the fundamentalPOSHcomponents.

The biggest difference between the two architectures is knowledge representation.
Ymir, like many architectures including PRS and Soar, represents explicit knowledge
in a single, general purpose knowledge base. Edmund and the BOD methodology keep
all knowledge within the behaviour metaphor, using specialised representations, and
associating it with relevant perception and behaviour. Since SoL’s VR timing skills
hinge on Ymir’s Action Scheduler and Motor Lexicon, SoL follows Ymir’s representa-
tional framework, including knowledge representation. However, modularity at least in



documentation is still recommended for ease in scaling and maintenance. This is also
facilitated in Ymir, where the knowledge base is divided into a variety of Knowledge
Areas.

2.7 Implementing Characters in SoL

The SoL architecture provides the framework for the middle layer of our proposed
three-layer design approach.AI facilitates the creation of a socially engaging world;
however such a world also requires careful overall creative design, and a rich visual
and behavioral structure. Because SoL is both behaviour based and hasPOSH action
selection, it is an excellent platform for practising Behaviour Oriented Design.BOD

breaks theAI design process into two phases: an initial specification phase and a cyclic
development phase of implementation and testing.

The initial decomposition is a set of steps. Executing them correctly is not critical,
since the main iterative development strategy includes correcting assumptions from this
stage of the process. Nevertheless, good work at this stage greatly facilitates the rest of
the process. The steps of initial decomposition are the following:

1. Specify at a high level what the agent is intended to do.
2. Describe likely activities in terms of sequences of actions. These sequences are the

basis of the initial reactive plans.
3. Identify and prioritise goals or drives that the agent may need to attend to. This

describes the initial roots for thePOSHaction selection hierarchy.
4. Identify an initial list of sensory and action primitives from the list constructed in

step 2. These are the initial Acts.
5. Select a minimal set of basic behaviours required for expressing and testing the

plans behaviour. This forms of basis for the initial version of the Motor Lexicon.

The remainder of the development process is not linear. It consists of the following
elements, applied repeatedly as appropriate:

– coding behaviours in the Motor Lexicon,
– coding reactive plans,
– testing and debugging this code, and
– revising and elaborating (scaling) the specifications made in the initial phase.

Heuristics for revising specifications, particularly for deciding whether intelligence
should be coded as part of a behaviour or as part of a reactive plan, have been described
elsewhere (Bryson, 2000). One of the main attributes ofBOD is that it allows for modu-
lar development, so that a particular plan element might initially be stubbed as a simple
primitive, but then later in the development process be replaced by a more complex el-
ement, with no change to old reactive plan scripts. In fact, old scripts can be reused for
testing as changes to established behaviours are made. Similarly, replacing a plan with
a behaviour, if necessary, can be achieved with a minimum of disruption.



3 Designing Character-Based Creative Play:
The Three-Layer Approach

As mentioned in the introduction, creative play can be viewed as consisting princi-
pally of novel recombination of established elements. In fact, the evolutionary utility
of play is considered to lie in enabling an individual to acquire and rehearse complex
behaviours, as well as to learn appropriate situations in which to express them (Bekoff
and Byers, 1998; Byrne and Russon, 1998).

In our view, it would be a mistake to attempt to design agents which were themselves
expected to develop playful skills over time, in a self-sufficient a way. Even children,
who are highly-honed learning machines, take years to acquire such behaviours to any
degree of entertaining proficiency. Consequently, even if such a task were within the
ability of science and technology, in the relatively pragmatic and demanding field of
entertainment, an artificial system is best instilled from the beginning with as much
knowledge as its designers can impart. This has been referred to as the engineering
approach to artificial intelligence development (Ziemke, 1998), and follows from our
work on Edmund and Ymir.

Similarly, AI developers should not necessarily be expected to be sufficiently skilled
artists that they can create the plots and characters needed for a fully engaging interac-
tive play experience.AI attracts (and perhaps requires) developers with a hubristic belief
in their own ability to replicate the thinking skills of others. However, good artists de-
vote years of attention, and often their formal education, to perceiving and constructing
the things that make a situation interesting, æsthetic and fun. Our design process places
the AI developer as an intermediary between the artistic and the engineering aspects
of the project. This is level 2 of our design process model, specified in the table in
Section 1. TheAI developer is in the best situation to understand both requirements
and restrictions of the overall project, and therefore has considerable responsibility for
communication as well as developing solutions.

TheAI expert is responsible for taking a set of motivations, goals, knowledge, per-
sonality quirks and skills, and creating an agent that will behave coherently according
to these. In a rich virtual environment designed for free, creative play an autonomous
character should be able to prioritise its goals and display its intentions. It should exhibit
both persistence and resolution while at the same time being aware and opportunistic. In
short, it should have a recognisable personality. Developing the initial set of character
attributes, however, is not necessarily solely the task of the agent expert. Itis necessar-
ily the task of one or more creative artists. The artist’s responsibility is to provide well
formed and interesting characters, skills and situations, to design potential plots and
plot twists. This is level 1 of our design process model. In this, as in most industrial de-
sign, it will be best if the artists work in a team with the agent developers, who can help
the artists understand the limits of the agent’s behavioral and expressive capabilities.

The agent developers are themselves constrained by the particular platform on which
the artificial agent is to be implemented. In robotics these constraints come from the
robot’s hardware; in virtual worlds they come from the graphics environment in which
the agent will be embodied. Creating this platform is level 3 of our design process. It is
the responsibility of theAI developer to provide requirements for, and understand the
constraints of, the underlying platform. Again, the character personality developer may



or may not be the correct person to develop the agent’s behavioral platform, depending
on whether the platform in this context also provides the basic behaviours, or behaviour
primitives, for the agents.

It is our view that the motor control of an autonomous character belongs to the
realm ofAI , but where precisely the “brain” meets the “body” can get blurry, especially
in a virtual world. For example, it may make sense to put collision detection or mo-
tor smoothing into the “world” (i.e. the graphics environment itself), either for more
efficient performance of the system or for cleaner implementation and easier debug-
ging. In nature, vertebrates have dedicated systems for providing such smoothing in
their hindbrain (Carlson, 2000), as well as being able to rely on physics for smoothness
and consistency. In a simulated world the division between an agent’s own perception
and the world itself may not be well defined. Implementations in level 3 can become a
point of contention because on either side of the fence between graphics andAI , very
different skill sets have been developed, and people working on each side may prefer
very different solutions to the problems at hand.

Grossly, the levels of our design process model correspond to the different sides of
SoL. The interface between levels 1 and 2 leads to specifications of personalities and
drives, and the interface between levels 2 and 3 lead to the implementation of the be-
haviours. But as is emphasised under BOD, the design process has to happen iteratively.
Many forms of technical constraint might only be recognised after development has be-
gun. Further, as the system develops, it can provide considerable creative inspiration
to the designers. Even more importantly, early users, particularly those coming from
outside the project, will discover both shortcomings and unforeseen creative potential
in the system. All of these sources of information should lead to periods of redesign
and renegotiation between the various levels of the project. Further, personality may be
demonstrated in subtle motions best provided in the behavioral level, or complex be-
haviour may require or suggest changes to the plans and drives. Thus all three levels of
the design process must be available for cyclic development and reanalysis. TheAI pro-
grammers working primarily at level 2 cannot be abandoned to try to satisfy potentially
impossible constraints coming from isolated processes on either side of the project.

4 Case Study: Creating Characters for an Adventure Narrative

The design process described above was developed as part of a research effort at LEGO
to create an interactive virtual reality entertainment package that allows children to
engage in creative and constructive play within an established action/adventure frame-
work. The project illustrates the design principles above, and gives indication of the
efforts and difficulties involved. We will refer to theAI portion of this large-scale, multi-
faceted research effort as the “castle character project”. This effort included a detailed,
relatively large virtual world with a castle situated on rolling hills, surrounded by a
mountain range. A full moon hangs in the sky; the sun just under the horizon. Users
can enter the world either through a desktop, or as fully embodied virtual (humanoid)
LEGO characters with full body tracking and immersive glasses with displays.



Fig. 1. Still from “the castle project,” a real-time interactive virtual reality environment. Image
c©1998 The LEGO Group

4.1 High Level Design

In the case of the castle character project, much of the character content was predeter-
mined, as it was a virtual version of an active product. The general appearance of the
characters, an outline of their personalities, as well as their world, had been developed
as a part of the marketing, but no stories had been created. The domain was a magic
castle, inhabited by an evil knight and various magical entities. Much of the largerVR

research effort was dedicated to ensuring that simply exploring the space would be in-
trinsically rewarding, but it was the introduction of moving characters that made the
virtual experience become alive and magical. For example, there is a SoL character
named Puff. Puff is a talking, flying green LEGO dragon. Puff can discuss the castle, or
be encouraged to demonstrate his flying ability.

The first step toward creating an interesting narrative for a set of characters is to un-
derstand the constraints of the task and the system. One set of constraints comes from
the character’s environment, e.g. the size and features of open spaces: The castle world,
though complex and interesting, is not very large relative to the size of the characters,
so this constrains the characters motions inside the castle. This can be compensated by
setting the most gross motion (such as large-character flying and sword fights) to the



space surrounding the castle. Another set of constraints are those dependent on the ex-
pected users of the system. Because expected users were young, naïve to virtual worlds
and, perhaps most importantly, only exposed to the system for a few minutes total, we
considered it essential to make the characters interesting whether or not the user delib-
erately attempted to interact with them. The solution was to make the characters interact
with each other as well. They were also designed to react to the visitor in their domain
in a way that encouraged exploration, but not to be too forceful or too intrusive on the
user’s experience. To maintain interest, the characters should act and interact in such
a way that they generate continuous change. There should be no steady state that the
system of characters can reach if the user is being passive.

The constraints of the virtual environment and the pre-existing product meant that
most of this change had to take the form of arrivals and departures, as well as a few gross
gestures. This effect was achieved by designing characters with various incompatible
goals. For example, a witch could frequently fly around the castle in a quest for intrud-
ers. When she found the intruder she would do little other than land nearby, slightly
approach the stranger and cackle. However, her presence might attract other characters,
some of whom might in turn repulse her (she was designed to fear flying bats). Having
characters that are attracted by some situations, yet repulsed by either crowds or other
characters, can help maintain the amount of free space needed for character motion. In
addition, it limits the number of simultaneous interactions, and therefore the amount
of confusion. This allows the designers to quickly focus the interest for the short-term
visitor.

Notice that stateless “reactive” social behaviours such as flocking (e.g Reynolds,
1987; Mataríc, 1992) will not be sufficient — the characters here are doing more than
being repulsed, attracted and avoiding obstacles. They are displaying personalities. A
visitor can learn individual character’s traits, and then manipulate these deliberately.
Exploring the personality space of the characters in the world becomes part of the puz-
zle, and part of the fun.

4.2 Encoding Personality

As described in BOD above, after creating a rough description of the desired world, the
next task is to develop a first-cut description of the reactive plans which will encode
each character’s personality. Starting from the descriptions of the characters set by the
marketing department of the product, and keeping in mind the constraints determined
in evaluating the task, each character was described in terms of three to five goals or
drives. Further, the behaviour associated with achievement of these goals was visu-
ally described. This work was done by a team of in-house artists and external creative
consultants, with theAI team participating both creatively and as technically informed
resources.

Once the personality of the characters has been sketched, the next steps were as
follows:

– Prioritising goals or gross behaviours and determining their necessary precondi-
tions. For example, the witch described above has a goal of patrolling the castle
from the air. This has a fairly high priority, but the motivation should be reduced by



the performance of the act, so that in general she circles the castle only three times.
She has a priority of landing in a room in which she has seen an intruder, once she
no longer desires to fly. She also avoids bats.

– Determining necessary behaviour primitives and behaviour states. For example, the
witch has to remember if she saw an intruder on her patrol. A bat might approach an
intruder closer and closer over successive swoops. A state within the bat’s swooping
behaviour enables it to keep track of its current level of “boldness,” which in turn
determines its trajectory. Some characters can be made into friends by playing with
them. These would have to remember how friendly they feel towards a particular
person. Seeing the user, avoiding the walls of the castle, flying and landing are
behaviour primitives required by all of these agents.

– Developing and testing the behaviour libraries and the scripts.

The architectural and methodological support we developed for this level has al-
ready been discussed, in Section 3.

4.3 Developing Perception and Action Primitives

In developing behaviour libraries, the task of the personality designer connects to the
task of environment’s architects. For the castle character project, some of the poten-
tial difficulties of this relationship were overlooked, and caused some of the greatest
difficulties of theAI effort.

There are several possible approaches for building the basic movement primitives.
One straightforward approach would be for the character developers to program the
behaviours from scratch using models prepared by the graphic artists. There is a general
problem for this approach: As mentioned earlier,AI programmers are not necessarily
artists or students of natural motion. Animals have evolved complex motion behaviours,
constrained by physical forces and structures not normally modelled on an artifact,
particularly one designed to run in real time, so difficult to take into account. Animals
are also constrained by habits of behaviour, whether general to a species or specific to
an individual. Even if æsthetic motion primitives are achieved by anAI programmer,
the process of programming them is likely to have been very time-consuming.

Another potential source of behaviour primitives explored on the castle character
project were the efforts of a team of animators already working on the project. The
idea was to segment animations into sets of behaviours suitable as exemplars of var-
ious behaviour primitives. A continuous variety of behaviour could be derived from
combining and connecting fixed sets of canned behaviours. Unfortunately, animations
also proved slow and difficult to develop. More importantly, the format the animations
were produced in was determined to be incompatible with the primary real-time vir-
tual reality environment. Real-time was an important part of theAI effort, and a critical
feature of playful, creative spaces. The graphics rendering loop tends to be the critical
element in the eye of the perceiver, since glitches (e.g. delays) in a character’s thought
process can be interpreted in many acceptable ways (hesitation, sluggishness, character
flaws), whereas glitches in frame advancement are perceived as system failure. In the
case of Puff, the SoL LEGO dragon, the real-time limitations for the behaviours were
most obvious when trying to synchronise speech synthesis, which was run on a separate



computer, to the graphical movements of the dragon’s mouth. The animated approach
was never-the-less used to account for the preoccupation of the evil knight who had
possession of the castle: he is seen being engaged outside the castle in a sword fight
with a good king. This arrangement was ultimately still unsatisfying, because without
AI , the action was repetitive, and worse could not move to actively avoid wandering
embedded user characters.

We also explored an intermediate solution: a purpose built animation tool for “quick
and dirty” animation segments stored in an appropriate format for the mainVR engine.
This technique was used for creating some of the most life-like motion on the castle,
a guard that responded to an approaching camera / observer by turning and facing it.
The intelligence behind this character was purely reactive, and did not use SoL, but
it did show the promise of this technique. Motion capture of humans participating as
puppeteers was the final source of “intelligence” explored in the project. This could
also have potentially served as a source of primitives forAI , but this alternative was not
explored due to lack of time.

The approach used on Puff was to heavily exploit the Action Scheduler mecha-
nisms derived from Ymir. Using this method combined with routines established in the
project’sVR library for controlling the dragon model’s degrees of freedom, building a
complete movement library took only two days for a singleAI programmer. These mo-
tions are not as elegant as the hand-crafted animations, but they do provide complete,
integrated control of the creature’s body at all levels, from tiny finger and eye move-
ments to body language and action. The Puff character integrated an array of technolo-
gies, including speech recognition and generation. Interactions with the dragon were
constrained to eliciting explanations and short stories (e.g. “Tell me about the castle”)
so that the character need only recognise a limited set of queries and requests, facili-
tating the use of situated planning to give multi-modal responses such as gestures and
actions as well as speech.

Another difficulty residing in the third design layer is the actual, technical connec-
tion of the agents’ intelligence to their world. The most obvious solution to this problem
is to consider the agents’ minds and the graphics world as separate, asynchronous pro-
cesses. This is essentially the approach we took for Puff. One problem we had to solve
was getting data from the agent’s sensory apparati - which are in the graphics domain -
to its mind, which is running independently, in our case written in another programming
language (LISP) and running on a separate computer. One of the technical solutions we
used was CORBA. CORBA, being platform and language independent, solves a num-
ber of integration and organisational problems. The main problem with the CORBA
solution is that over a 100 Mb Ethernet the loop time from a raw perception (collected
via the graphics loop) to the mind and back (i.e. perception-action loop) takes too long
to simulate realistically very fine-granularity responses such as being startled (e.g. by
a scream behind the agent’s back) or to provide fluid, rapid turn-taking, both essential
characteristics of highly interactive play.

In developing character behaviours, the task of the personality designer connects to
the task of environment’s architects. Some of the issues of interfacing between a char-
acter’s behaviours and the muscles of its body, as well as the character’s senses and
perceptual mechanisms can present large difficulties, unless theVR world and inter-



face is built with the problem of supporting characters in mind. Nevertheless, this first
practical effort of using the three-layer approach for constructive narrative enabled us to
unify designers with very different skill sets, and to test the employment of an advanced
AI architecture in a large virtual world.

5 Conclusions

In this paper, we have presented and described our experiences with a three-layer de-
sign process for developing an environment for constructive social play. We have also
presented SoL, an architecture for complex characters capable of multi-modal real-time
dialogue with humans, and some of our experiences from using these techniques on a
large-scale industrialVR project at LEGO.

A constructive narrative is creative on several levels. In designing a creative ex-
perience, the goal is to provide both interesting media for expressing the content to
be recombined, and tools that facilitate the recombination. If the media itself includes
active creators, in our case agents that autonomously create situations and social dy-
namics, then the user has the opportunity to engage in truly complex constructive play.
This kind of creative experience is currently only afforded to writers of drama, corpo-
rate managers, and public policy makers. However, creating an environment for such
play takes considerable artistic and technical skill and planning.

We have described how a creative environment with constantly changing stories and
adventures can be developed using artificial intelligence and design techniques that ex-
ploit and express the creativity of the designers. The intelligent agents in these environ-
ments are literally agents of creativity rather than being significant creators themselves:
they embody the rules and knowledge both invented and learned by their designers.
The design approach presented here can be used for designing creative environments
and constructive narratives. The creative experience for the user consists of exploring
the possibilities of the physical and social environment, and finding new, entertaining
ways to exploit the spaces and personalities. Our design process focuses on the roles
of the various team members in communicating and constructing an interesting real-
ity, based aroundAI characters. The characters are implemented using behaviour-based
techniques, for simplicity of design, combined with situated planning devices, to al-
low for complexity of characterisation and behaviour, and more traditional knowledge-
based systems for natural language and dialogue abilities. In the future, we hope to
develop more fully interactive characters. We would also like to develop more open
narrative architectures that allow the users to design the characters themselves.
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