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Abstract

Hierarchical organization has become an un-
fashionable model of intelligent control within
some communities of both natural and artificial
intelligence. What has replaced it are models
based on parallel distributed processes, both neu-
ral and behavior based, or dynamical systems the-
ory, which denies modularity, let alone rigorous
structure.

In this paper we present experimental results
demonstrating an artificial reactive hierarchy-
based system that outperforms fully parallel sys-
tems in a highly dynamic environment with a
large number of conflicting goals. This work is
conducted in Tyrrell’s (1993) Simulated Environ-
ment and can be seen as an extension of his work
on comparing action selection mechanisms. We
observe that the hierarchical strategy has also
been well demonstrated in nature. We argue that,
for complex intelligences, preserving full reactiv-
ity may not be worth the cost in terms of the
complexity of action selection.

1. Introduction

The use of both hierarchical and fixed sequential order-
ings of behavior for action selection has been postulated
since the time of the early ethologists (Lorenz, 1981).
The advantage of such systems are clear: they reduce
the combinatorial complexity of control. The set of ac-
tions which may be selected from is determined by con-
text, including state internal to the agent. Once an agent
is attending to a particular strategy, actions associated
with alternative strategies are unlikely to interfere with
behavior production.

Early artificial intelligence research followed these hi-
erarchical models, but ran into great difficulty in coping
with dynamic environments in real time. Action selec-
tion was based on constructive planning, which was in
turn based on heuristic search (Newell and Simon, 1981).
This system has been both demonstrated and theoreti-

cally proven intractable without major alteration (Nils-
son, 1984; Chapman, 1987). These results led researchers
both inside and outside of artificial intelligence towards a
new paradigm of reactive intelligence (Georgeff and Lan-
sky, 1987; Agre and Chapman, 1990; Maes, 1991; Rosen-
schein and Kaelbling, 1995; Hendriks-Jansen, 1996; van
Gelder, 1998; Bryson, in press). A reactive system is de-
signed from the beginning to be situated in a complex,
dynamic environment, which it must constantly monitor
and to which it must instantly react.

A basic premise for many of these researchers is that
a truly reactive system must have all aspects of its in-
telligence constantly active and sampling the environ-
ment (Maes, 1991; Brooks, 1991; Tyrrell, 1993; Hendriks-
Jansen, 1996). This is associated with the behavior based
approach to reactive intelligence, in which intelligence is
composed of relatively simple modules: tightly coupled
units of sensing and action. These behaviors are the per-
ceptual system of the agent. If they are inactive, relevant
information in the environment will be ignored. Some
authors also reject hierarchy in a controller altogether,
on the basis that it results in bottlenecks, staged re-
sponses, and governed, unreactive behavior (Maes, 1991;
Hendriks-Jansen, 1996). Others design systems that ex-
ploit hierarchical order, but still maintain constant par-
allel processing (Tyrrell, 1993; Blumberg, 1996). Such
approaches still neglect the main advantage of hierarchi-
cal organization described above.

This paper demonstrates that an agent may in fact
ignore otherwise significant portions of its environment
in pursuit of more important goals and still be very suc-
cessful in a highly complex, dynamic and hostile environ-
ment. We use an established test base for reactive con-
trol, Tyrrell’s Simulated Environment (Tyrrell, 1993).
We compare two representative architectures originally
developed for and tested on mobile robots. The represen-
tative fully informed architecture is also the architecture
previously tested as best in Tyrrell’s SE, the Extended
Rosenblatt and Payton Architecture (Tyrrell, 1993); the
architecture with selective attention is our own (Bryson
and McGonigle, 1998). We then draw on biological evi-



dence that animals (including humans) are not fully re-
active, and argue that the complexity of the intelligent
system necessary to handle full environmental informa-
tion makes a selective hierarchy preferential to a fully
parallel organization.

2. Experimental Approach

This section describes the tasks and environment used
in running the action-selection experiments. It also de-
scribes the architectures representing the two forms of
cognitive organization for control: fully informed vs. se-
lectively attentive.

2.1 The Simulated Environment

Tyrrell’s Simulated Environment, the SE, specifies an
action-selection task which requires an agent to man-
age a large number of conflicting goals. He defines an
environment in which a small omnivorous animal is re-
quired to survive and breed. He defines six subproblems
for the animal to solve.

1. Finding sustenance. In addition to water, there are
three forms of nutrition, satisfied in varying degrees
by three different types of food.

2. Escaping predators. There are feline and avian
predators, which have different perceptual and mo-
tion capabilities.

3. Avoiding hazards. Benign dangers in the environ-
ment include wandering herds of ungulates, cliffs,
poisonous food and water, temperature extremes and
darkness. The environment also provides various
forms of shelter including trees, grass, and a den.

4. Grooming. Grooming is necessary for homeostatic
temperature control and general health.

5. Sleeping at home. The animal is blind at night; its
den provides shelter from predators and other haz-
ards, and helps the animal maintain body tempera-
ture while conserving energy.

6. Reproduction. The animal is male, thus its reproduc-
tive task is reduced to finding, courting and insemi-
nating mates. Attempting to inseminate unreceptive
mates is hazardous.

The success of the animal is considered to be the number
of times it mates in a lifetime. This is highly correlated
with life length, but long life does not guarantee repro-
ductive opportunities.

These problems vary along several axes: homeostatic
vs. non-homeostatic, dependency on external vs. in-
ternal stimuli, periodicity, continual vs. occasional ex-
pression, degree of urgency and finally, whether prescrip-
tive or proscriptive with regard to particular actions. In

addition to these problems, the environment is highly
dynamic. Food and water quantities, temperature and
light vary, and animals move. Sensing and action are
uncertain. Perception in particular is extremely limited
and severely corrupted with noise; the animal usually
misperceives anything not immediately next to it, un-
less it chooses to spend time and expose itself by rearing
up and “looking around” in an uncovered area.

Tyrrell separates the problems of learning and navi-
gation from the problem of action selection by providing
these elements in his simulation. Thus the animal has
available as primitives a direction in which it thinks it re-
members its home or recently observed food and water.
The animal’s sense of location with respect to its den
decays over time and distance, thus keeping track of its
bearing is a part of the “sleeping at home” sub-problem,
even though the precise mechanism of navigation is not
explicit.

The results of the animal’s performance is heavily
dependent on chance implementation details of the en-
vironment. In his thesis, Tyrrell attempts to check the
independence of his results from these details by running
tests in four different “worlds”. Besides the standard
model he first designed, there are three variants. As
documented (p. 162) these vary in the following ways.

1. Perception is altered by affecting the animal’s visi-
bility according to the time of day, the amount of
vegetation, and the animal’s own activity.

2. The noise variance for navigational information is
tripled, and the size of the remembered map is
halved.

3. Motor control is compromised by making it more
probable that incorrect actions are taken, and by
changing the conspicuousness and energy consump-
tion of various actions.

2.2 The Extended Rosenblatt and Payton Ac-
tion Selection Mechanism

Tyrrell used this environment to test five different archi-
tectures from ethology and artificial intelligence. The
first four were drive theory (Hull, 1943), the psycho-
hydraulic system of Lorenz (1950, 1981), spreading acti-
vation networks of Maes (1991), and the connectionist,
hierarchical, feed-forward networks of Rosenblatt and
Payton (1989). The fifth, which he recommends not only
as best but as nearly optimal, is his own extension of
the latter system, the Extended Rosenblatt and Payton
architecture (ERP). In this model, all the constituent el-
ements operate continuously in parallel. These elements
constantly evaluate their own relevance with respect to
the current environment and the animal’s needs. This
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relevance is used to weight the element’s recommenda-
tion for a next action, which is also constantly in com-
putation. Ultimately a winner-take-all algorithm is used
to determine the expressed action, which may be a com-
bination of the desires of several elements.

Tyrrell rejects the subsumption architecture of
Brooks (1986) as being too ill-defined to be considered a
true architecture for action selection. Regardless of the
accuracy of this criticism, the ERP shares many features
in common with subsumption, such as full concurrency.
The primary difference is the system of prioritization be-
tween behaviors: the ERP’s is more orderly with a clear
directionality between any two behaviors. Subsumption
allows for cycles within a single layer, though in prac-
tice these seldom exist. Also, the somewhat complicated
system of inhibition and suppression in subsumption is
replaced by a uniform pipeline metaphor in the ERP, with
no obvious loss of expressiveness.

The Rosenblatt & Payton model was developed and
first tested as a robot architecture (Rosenblatt and Pay-
ton, 1989). The main feature of this architecture is what
Tyrrell terms a free-flow hierarchy. Nodes in the hierar-
chy receive activation from internal and external stimuli
and higher elements of the hierarchy. They pass energy
to their children. What differentiates this model from
the drive model or other hierarchies is that no decisions
are made until the leaf or action nodes. This allows
for the selection of compromise candidate behaviors: be-
haviors that satisfy or express multiple drives. See for
example Figure 1.

Tyrrell’s work and the ERP architecture in particu-
lar have been very influential. For example, Humphrys
(1996) evaluates a number of strategies for final action
selection, favoring a selection on the basis of maximiz-
ing the least unhappiness of the various units. Blumberg
(1996) has divided his behavior elements into classes that
do not need to compete for physical resources on the
agent, and may therefore express themselves simultane-
ously, as in the joyous or woeful gaits for humans and
dogs. However, the experiments in this paper compare
directly to to the Extended Rosenblatt and Payton ar-
chitecture. This is for two reasons: first, because it had
already been stringently tested against four other pop-
ular models of actions selection, and second, because a
solution for the SE implemented by its original author
already exists, removing several of the sources of bias
possible in such a comparison exercise.

Tyrrell’s extensions to Rosenblatt & Payton’s origi-
nal system are as follows:

e The addition of penalties for temporal delays and
uncertainty of rewards for items that are distant or
based on poor memory or perception. This allows the
animal to chose a small but apparent near food source
rather than a large but distant, poorly remembered
food source.

e The creation of explicit penalties for appetitive vs.

consummatory actions!.

1Failing to favor consumatory actions is also a problem for Maes’ architecture, which performs particularly poorly in the SE.



e The addition of a new rule for combining the inputs
to a single node that explicitly distinguished the max-
imum of inputs adding positive energy to a particular
node and the minimum of inputs opposing the node.
This was significantly more successful than simple
summation of the activations (See further Humphrys,
above).

2.8 Edmund

The ERP is able to model a hierarchical structure of
data flow, but it does not represent decisions or a fo-
cus of attention — normally considered basic elements
of a cognitive model. This reflects a strong belief in
the agent community that traditional hierarchical struc-
ture is overly rigid and leads to neglect, and must be
replaced by more dynamic, fully parallel architectures
(Maes, 1991; Brooks, 1991; Hendriks-Jansen, 1996). The
reason Tyrrell argues that the ERP is a near optimal ar-
chitecture is due to its ability to monitor all goals simul-
taneously, thus enabling it to select more optimal actions
in particularly contentious situations. He emphasizes the
idea of compromise candidate actions, which satisfy more
than one set of goals.

The argument of this paper is that an adequately re-
active hierarchy can surpass the performance of a fully
reactive system, despite the loss of information and com-
promise candidates. The simplification in control struc-
ture that results from taking advantage of selective at-
tention makes an intelligent approach easier to develop,
whether by natural evolution or by human design.

The experiments in this paper use an agent archi-
tecture called Edmund (Bryson and McGonigle, 1998).
Edmund is a behavior-based architecture with Par-
allel rooted, Ordered, Slip-stack Hierarchical (POSH)
action selection. POSH action selection exploits hi-
erarchy both to combat the combinatorics of action
selection and provide persistence in behavior. At
the same time, it maintains a high level of re-
activity through its parallel roots and strictly lim-
ited stack size. Edmund is available on line from
http://www.ai.mit.edu/ " joanna/edmund.html. The
code for the simulations reported in this paper is also
available at the bottom of the same page.

2.3.1 Behavior Oriented Design and
POSH Action Selection

Edmund is a behavior based architecture with a sep-
arate, specialized action selection mechanism. In this
respect it is similar to several mainstream architectures,
such as RAPS (Firby, 1987) and PRS (Georgeff and Lan-
sky, 1987). However, the behavior modules in Edmund
represent a higher level of abstraction than the sim-
ple control primitives they have come to represent in
many hybrid architectures. A behavior in Edmund is a

group of related functions for sensing and acting upon
the world, and the state they need in order to make intel-
ligent discriminations. For example, an agent may have
a behavior for navigating through a world, which is de-
pendent on a stored set of experiences pertaining to the
location and accessibility of various landmarks or salient
items. Or, it might have a greeting behavior which se-
lects from a variety of possible expressions, which in turn
reflect the agent’s mood or familiarity.

The addition of variable state makes the behaviors
in Edmund less like those in standard behavior-based
systems, which were highly influenced by the edicts
against variable state due to Brooks (1991). On the
other hand, Edmund behaviors are actually more like
the semi-autonomous, perception-rich behaviors Brooks
originally described than are those reduced to being
primitive function calls. Edmund behaviors and action-
selection scripts can be implemented using a modified
version of object oriented design (e.g. Coad et al., 1997)
called behavior oriented design, or BOD (Bryson, 2000a).

The behaviors of an Edmund agent are responsible
for monitoring the parts of the environment that are
salient to them, for remembering relevant experiences
(such as the agent’s own current motivation or previous
social encounters,) and for controlling expression of their
associated actions. However, a behavior does not on its
own determine when an action is expressed; that is left
to the action selection mechanism.

PoOsH action selection is based on reactive plans,
which are composed of five possible element types. The
most fundamental level of control are primitive actions
and sense predicates. Both of these are simply inter-
faces to the behaviors which control their expression.
As is standard for behavior-based control, the primitive
“actions” are themselves fully guided by their own, spe-
cialized perception. The sense primitives are not par-
ticularly different, except that they provide information,
and have no side effects on the real world. Sense prim-
itives are used for informing the decisions of the action
selection mechanism.

The most basic plan structure is the action pattern,
which executes a set sequence of behavior. Action pat-
terns significantly reduce the combinatorics of action se-
lection, but they are not particularly reactive so tend
to be fairly short. A more flexible structure is provided
by the competence. A competence is a prioritized col-
lection of plan elements, the behavior of which tends to
converge on a particular goal. A competence is a sin-
gle tier of a conventional reactive plan, somewhat like a
triangle table or teleo-reactive plan (Nilsson, 1994). A
competence consists of a set of elements which may be
either action patterns or other competences. The ele-
ments of a competence are not only prioritized, but may
have triggers. The highest priority element that triggers
successfully is allowed to execute. An example of how a



simple plan composed of one competence can operate to
solve problems under a variety of conditions is provided
in Appendix A.

Generally, the very highest priority element of a com-
petence is a goal trigger, which has no action, but rather
recognizes whether the intended task has been com-
pleted. When a goal trigger fires it terminates the com-
petence. Competencies also terminate if none of the el-
ements can fire.

The root of a POSH plan is a special persistent form
of competence which allows for the parallel processing
of its elements. This is called a drive collection, and
its elements are analogous to individual drives in ethol-
ogy. In real-time versions of Edmund, the execution of a
drive collection employs course-grained, pseudo-parallel,
best-attempt scheduling for shifting attention between
its various elements. The drive collection retain the
triggers and prioritization of elements that competences
have. Resources can when necessary be monopolized by
higher level drives, usually by arresting the attention of
the drive collection.

2.8.2 Reactive Mechanisms in Edmund

PosH action selection exploits the advantages of hierar-
chical and sequential control for combating the combina-
torial complexity of the action selection problem. At the
same time, posh action selection is intended to provide
adequate reactivity for operating in a dynamic environ-
ment.

Reactivity under Edmund comes from several
sources. It is grounded in the parallel and semi-
autonomous behaviors, which maintain their own per-
ceptual state largely independently of action selection.
It is then filtered through POSH control cycle. At every
program cycle, attention begins at the parallel roots of
the posh hierarchy, the drive collection. Attention then
shifts to the highest priority drive which has been trig-
gered and is not habituated on this cycle. Each drive
element typically has a plan element in some state of
execution. For example, it may be part way through an
action pattern, or it might be attending to a particular
competence. Attention is focussed on that plan element
until one primitive action has been operated, then the
program cycles again. This is the source of the course-
grained parallelism: no primitive action should in itself
take a significant time to execute and return. Long, con-
tinuous actions are controlled from the behaviors them-
selves; in their case the primitive actions usually serve
as signals to begin or persist until the next anticipated
signal time.

The competences themselves serve as a source of
reactivity, since they are sufficiently flexible to handle
failed operations and unexpected changes in the envi-
ronment. They are essentially basic reactive plans, sim-
ilar to RAPs (Firby, 1987) and teleo-reactive programs

(Nilsson, 1994). Further, although competences are hi-
erarchical in that they can contain action patterns and
other competences as elements, no stack is allowed to
grow. When a competence is activated, it has received
activation from a particular drive element. When it then
in turn passes attention to one of its elements, it replaces
itself with that element in the drive’s current attention.
This is the slip-stack mechanism, the ‘S’ in POSH.

Each drive element is a hierarchy root. Each drive
element keeps track of this root as well as the element
to which it is currently attending. When a competence
or action-pattern terminate, then the drive that was at-
tending to it switches its attention back to its root. This
way, every decision that was made in activating that ele-
ment is revisited before returning attention to the termi-
nating element’s parent. If the parent is again selected, it
will then revisit the decisions that activated the element
in the first place. If the element has failed for some rea-
son the parent will retry it, unless a specific mechanism
of habituation or episodic memory blocks that repeated
strategy. If the element has succeeded and the envi-
ronment has not otherwise changed, then presumably a
higher-priority plan element will be able to trigger, and
the plan will progress.

Besides providing reactivity, the slip-stack approach
supports chains of arbitrary length, including cycles, in
a control structure. An example where a cycle might be
useful is in controlling the alternate paces of two-legged
walking until a destination is reached or some other goal
interferes. Another example is natural language produc-
tion.

2.3.83  Summary

The following aspects of Edmund facilitate its reactive
nature:

e Edmund is a behavior-based architecture. Each be-
havior maintains its own perceptual state concur-
rently.

e Each element of the reactive plans that make up Ed-
mund’s POSH action selection is prompted to perform
by its own perceptual requirements. There is no error
passing or assumption of success for an operation.

e The top level of the POSH action selection hierarchy,
the drive collection, executes its elements in parallel.
This allows for the constant monitoring of important
sense modalities or internal states and the possibility
of interruption for urgent or opportunistic conditions.

e No stack is maintained as control traverses through
a hierarchy of competencies.

PosH action selection thus has the potential for ex-
pressing fairly dynamic behavior, but it does not have
the complete opportunism or full democracy of Maes’



and Tyrrell’s architectures. Any given hierarchy rooted
under the drive collection may branch an arbitrary num-
ber of times, and only one branch will be followed at any
particular time. A POSH reactive plan allows for the ex-
pression of both sequences and prioritization. It allows
for the utilization of selective attention to ensure partic-
ular tasks are completed fluently.

Because Tyrrell’s simulated environment provides
nearly all of the memory, action and sensory primitives
required for its task, the experiments below only make
use of POSH action selection. Nearly all of the primi-
tives are rooted directly in the behavioral competences
provided by the SE. The single additional behavior facil-
itated the combination of perceptual inputs in selecting
directions to run in when pursuing mates or being pur-
sued by predators.

3. Experiments

3.1 Procedure

The code for controlling an agent using the Edmund ar-
chitecture within the SE was written over a three week
period. Total programming time was approximately six
days. Considerable time had to be devoted to evaluation;
the highly dynamic nature of the SE led to very volatile
results, so 6000 simulations (representing no more than
10 days of life each) had to be run for statistically sig-
nificant results.

The first POSH plan was the most simple one that
could generate a genetic fitness measure — one that only
pursued mating. Thus the root drive “life” had a single
competence “mate”, which consisted of:

inseminate

(courted_mate_here
)

pursue pick_dir_mate go

life (D) mate (C)

court (mate_here t)

See Appendix A for an explanation of the notation.
This simple program performed fairly well. Though
on average it lived under half a day, it had a genetic
fitness of slightly more than 2.0, immediately outper-
forming Tyrrell’s best implementation of Maes (1991).
Other obvious behaviors were added gradually, testing
the new additions and ordering over approximately 800
runs of the simulator each. Simplicity was favored un-
less the program improved very significantly. After this
phase of development the components of life in order of
priority were as below. Notice that here the label for
the drive has been omitted for clarity, but the drive is
still represented by the leftmost line. The label X::Y in-
dicates drive elements which habituate. Homing in the
evening and looking for predators take priority intermit-
tently, but habituate for at least 5 cycles. This allows
other, lower priority behaviors to express themselves im-

flee ((®))
(sniff_predator
t)

mate (C)
(sniff_-mate t)

home 1::5 (late t)

mediately after they have fired.

freeze
(see_predator
t) (covered t)

run-_away
(see_predator
t)

look

as above

pick-dir_-home go

hold_still

pick_safe_dir go-fast

observe_predator

(at-home nil)

check 1::5 look-around

use_resource
(needed_res_avail

exploit (©) )

(day-time t)

exploit_resource

leave pick-dir go

sleep-at_home sleep
(at_home t)
(day_time nil)

At this point, the genetic fitness of the Edmund an-
imal was approximately 65% of the ERP’s. The next
phase of development was to examine the animal’s per-
formance step-by-step in the SE graphical user interface.
This resulted in the following observations and changes:

e The animal was often killed by feline predators while
freezing. Fixed by adding a precondition preventing
the freezing action pattern in the presence of felines.

e The animal seemed too concerned with staying in
shelter and failed to explore much unless chasing
mates. Altered by reducing the desire for shelter in
pick_dir.

e Less concerned with shelter, the animal now some-
times explored so far afield it lost bearing and could
no longer find its den at nightfall. Fixed with the
addition of the following action pattern:

pick_dir_-home go

This AP was prioritized just above homing, with no
habituation.

triangulate (getting_-lost t)

e The animal often had unforced accidents with irrele-
vant animals and cliffs, particularly while it was pur-
suing mates. Fixed by altering pick_mate_dir to take
these into account.

Another class of problems could not be fixed so pro-
grammatically, because they dealt with tradeoffs. For
example, the animal’s erratic perception frequently leads
it to hallucinate a predator nearby. Too high of priority
to perceived predators disrupts behavior coherence suffi-
ciently to interfere with mating, while too little attention
to predators reduces mating opportunities by reducing
the expected lifespan. This class of problem was ad-
dressed by running a large number of simulations with
randomly selected values for six critical thresholds: four
for detecting predators (observing or fleeing each of the



two types), one for seeking shelter and one for avoiding
dangerous places.

Linear regression on this data was uninformative, be-
cause the variables relationships to the animals success
were neither linear nor independent. Instead, we selected
the variable sets for the top few performing individuals
out of 4400 trials, and tested each over 800 additional
runs. The best set improved the animal’s mean perfor-
mance by 25 percent.

At this point Edmund’s animal bested the ERP’s in
all the test worlds except for world 3. Examining the
simulator code showed that world 3’s change primarily
differed by substantially reducing the energy consump-
tion for certain activities (such as mating and running)
as well as significant changing the conspicuousness of
some behaviors, both positive and negative. This led
to the postulate that Edmund’s mouse was wasting too
much time or conspicuousness on grazing. Consequently
the exploit competence and its elements were divided
into their constituent parts, eliminating the one case of
“compromise candidate” determination that had made
up Edmund’s solution. Also, flight from predators was
changed to be the same as normal cautious exploration,
only faster.

3.2 Results

Edmund’s mouse performed better (that is, mated
more), but not significantly so (critical ratio (F) = 1.36)
in Tyrrell’s worlds. However, it was very significantly
better than the ERP in every world except for variant
world 3, and also than any other architecture reported
in (Tyrrell, 1993). The final results (over 6600 trials)
were:

World Edmund ERP F
Standard | 8.17 (0.19) 4.77 (0.12) 15.01**
Var. 1 3.56 (0.09) 2.46 (0.06) 9.59**
Var. 2 10.79 (0.18) | 4.56 (0.12) 27.6**
Var. 3 10.74 (0.24) | 12.53 (0.23) | —5.47**

World Edmund ERP F
Standard | 9.12 (0.19) 8.09 (0.17) 3.95%*
Var. 1 4.02 (0.09) 3.61 (0.09) 3.1
Var. 2 9.67 (0.2) 8.16 (0.16) 5.73**
Var. 3 11.23 (0.23) | 13.38 (0.23) | —6.58**

where the parenthetical numbers indicate standard error
— the standard deviation of the mean scores. A negative
sign is used with an F value to indicate the significance
is in favor of the ERP.

We also tested both architectures in an additional set
of worlds which were identical to Tyrrell’s except that
food was significantly scarcer. The range of possible ini-
tial food supplies was modified as follows:

Food | Original Sparse
fruit | [50, 81] |5, 35]
cereal | [45, 26] [2, 27]
prey [25, 36] [2, 15]

which resulted in the following performances:

As can be seen, Edmund also coped substantially
better than the ERP with this more difficult situation,
though again with the exception of the third variant
world, to which Tyrrell’s implementation of the ERP
seemed particularly well adapted. In this world, how-
ever, the overall performance of the Edmund animal was
significantly better than the ERP’s.

Another important result pertaining to this paper’s
thesis is the relative complexity of the two systems. Th
Edmund agent required 20 action primitives and 22 ded-
icated sensing primitives. It also had 7 competencies and
23 action sequences defined in its final program script.
The ERP agent had 61 sensing nodes and 278 other nodes,
of which 216 were intermediate points in its hierarchy.
Edmund had 26 thresholds embedded in its primitives,
of which 6 were not one of four standard values (0.2, 0.4,
0.6 or 0.8). The ERP had 264 weights, of which 189 were
either 1.0 or -1.0. However, the other 75 weights took
37 separate values. In summary, the control of the Ed-
mund agent was approximately an order of magnitude
more simple from a design standpoint than that of the
ERP agent.

4. Analysis and Implications

Although there is an acknowledged advantage to follow-
ing the original research and thus having a target to
beat, both the relative lack of complexity of the POSH
action selection and the significantly superior results are
strong evidence that managing complexity through se-
lective attention can be more important than having a
fully reactive architecture.

This result is supported by the fact that natural evo-
lution has also selected attention focusing strategies. An-
imals control not only for what information is worth at-
tending to, but when. Ethology has long had exam-
ples such as the digger wasp, which treats caterpillars
as food only when they are engaged in appetitive be-
havior (Lorenz, 1981). Rats also will not engage in any
appetitive behavior (such as foraging or eating) without
the appropriate triggering of their limbic system (Carl-
son, 1994). Recent work on decoding hippocampal firing
patterns indicates that cells can have different roles and
participate in different ensembles depending on the par-
ticular behavioral context the rat believes itself to be in
(Wiener, 1996). The human brain is extremely context
sensitive. Even the retina has more neurons feeding into
it then taking information out — even at the very ear-
liest levels of sensing, expectations grounded in current
context significantly affects what is perceived.



The work described in this paper addresses the criti-
cisms leveled by researchers such as Maes, Brooks, Gold-
field, Hendriks-Jansen and van Gelder at not only arti-
ficial intelligence, but also psychology and philosophy.
These researchers have claimed that the use of hierar-
chy for control is intractable for agents needing to sur-
vive in a dynamic world. In so doing, they have ne-
glected significant evidence for structured control in ob-
served natural behavior (e.g. Tinbergen, 1951; Dawkins,
1976), through reasoned argument (e.g. McGonigle and
Chalmers, 1998), and in the experience artificial intelli-
gence (e.g. Bonasso et al., 1997; Kortenkamp et al., 1998;
Bryson, in press) in an over-reaction against the less re-
alistic AI systems that preceded their work. While there
can be no doubt that animals have dedicated parallel
mechanisms for monitoring the occurrence of significant,
plan-altering events, there can also be no question of the
importance of controlling the combinatorial complexity
of action selection, nor of the critical nature of the de-
sign process. Whether the control for an agent is evolved,
learned, designed by hand, or developed through some
combination of these, the agent’s architecture must pro-
vide the right representation of control in order to make
that development process likely to succeed.

Although considerable space has been dedicated to
describing the exact workings of the Edmund architec-
ture, we do not believe that the findings of this paper are
unique to the particular architectures examined. Tyrrell
himself examined five other architectures, both hierar-
chical and parallel. He settled on what he believed to
be the optimal action-selection scheme on the basis of
maximum information with appropriate bias. We believe
that the reason Edmund out-performed the hierarchical
action-selection mechanisms previously tested in the SE
is because of its combination of hierarchical and reactive
elements. We have been working to demonstrate that
the principles of POSH action selection can be applied
under a number of other architectures, including Ymir
(Thérisson, 1999), PRS (Georgeff and Lansky, 1987) and
JAM (Huber, 1999). These architectures also provide for
both hierarchy-based action selection and for interrupt-
ing and redirecting control attention. Other architec-
tures also have these features, such as the most recent
version of Sloman’s architecture (Sloman, 2000), which
includes high-level interrupts from “alarms”, and AT-
LANTIS (Gat, 1991). We chose Edmund and the ERP
as representatives of their respective approaches. We be-
lieve both approaches to be particularly well represented
because their agents in the SE were designed by the same
people who designed the architectures.

We have discussed at length elsewhere the validity of
testing action-selection mechanisms in a simulated en-
vironment rather than on a robot (see Bryson, 2000b, ,
Section 4.5). Although purpose-built simulations can in-
clude biases which overlook significant issues, the same

can be said of many robot experiments. In this case,
the simulation has been well established in the litera-
ture, and has been previously demonstrated with a large
variety of action-selection mechanisms. Further, using
this simulation guaranteed that we had not in any way
misrepresented the ERP, since we used its code directly
as provided by the original author. We were also able to
confirm the original reported experimental results, and
to perform the large number of trials necessary to estab-
lish significant results in a task so thoroughly complex
that it creates a very high variance in individual out-
comes. This is not to say that we deprecate the use of
robots as experimental platforms: the Edmund architec-
ture and accompanying design methodology was signif-
icantly refined and improved when moved from a simu-
lated blocks world to a real mobile robot. However, we
do believe that robots are not necessary for doing valid
action-selection AI research. Neither are simple robot
experiments sufficient; we have yet to see a robot exper-
iment that supports the number and diversity of com-
peting goals present in the SE. The nearest contender is
probably RoboCup (Kitano et al., 1997).

5. Conclusion

This paper has presented work indicating that even (per-
haps especially) in an extremely dynamic and dangerous
environment, an agent may be better off ignoring some
of the information available to it. This is because find-
ing the correct design, whether by hand-coding, learning
or natural evolution, is the key bottleneck to develop-
ing intelligence. Reducing information reduces the com-
plexity of the task. This point has been demonstrated
by directly comparing two representative architectures
in an experimental setting: a fully informed architec-
ture, Tyrrell’s Extended Rosenblatt and Payton archi-
tecture, which had previously been evaluated against
several of the other leading fully reactive architectures;
and an architecture utilizing selective attention, called
Edmund, which was shown to have significantly better
performance and to allow for significantly simpler design.
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Appendix A

The following is a detailed example of the working of
a POSH competence, taken from (Bryson, 2000a). Con-
sider an example in blocks world. Assume that the world
consists of stacks of colored blocks, and that the goal of
the agent is to hold a blue block. A possible plan would
be?:

goal (holding block)
(block blue)

drop (holding block)

drop_held_object

move_attn_to_stack-top
grasp-attended-object

grasp-blue (C)

grasp 3::0 (fixated-on
blue)

look (blue_in_scene)

Each plan element starts with a label — a (C) next
to the label indicates a competence, a (D) a collection
of drives. Preconditions follow the plan label, and are in
parentheses. Action patterns are in boxes, in this simple
plan most of them have only one element. For a compe-
tence or drive collection, the highest priority element is
at the top of the line next to the label.

For this competence, the highest priority element is
a special form which recognizes that a goal has been
achieved. A competence does not need to have a goal,
and drive collections seldom do. A competence will ter-
minate if either the goal is achieved or if no elements can
execute. Otherwise, the highest priority element that
can run is executed.

Consider the case where the world happens to in-
clude a stack with a red block sitting on the blue block.
If the agent has not already fixated on the blue block be-
fore this competence is activated, then the first operation
to be performed would be element 4. Otherwise, if for
example the previously active competence has already
fixated on blue, 4 would be skipped. Once a fixation is
established, element 3 will trigger. If the grasp is suc-
cessful, this will be followed by element 2, otherwise 3
will be repeated. Assuming that the red block is eventu-
ally grasped and discarded, the next successful operation
of element 3 will result in the blue block being held, at
which point element 1 should recognize that the goal has
been achieved, and terminate the competence.

Infinite retries on the grasp is prevented through ha-
bituation without recovery. The grasp will be tried 3
times. Elements of a drive collection may recover from
their habituation. For example, a label 1::5 indicates
that after being triggered once, the element will not be
available for triggering for another 5 turn cycles. In
real-time applications such as robots, drive habituation
recovery is scheduled by real times (see Bryson and Mc-
Gonigle, 1998).

2This task is taken from (Whitehead, 1992). The perceptual operations are based on the visual routine theory of Ullman (1984), as
implemented by Horswill (1995). Fixate_blue puts visual attention on a blue object (blue is considered to be a “pop-out property”.)
Move_attn_to_stack_top is actually an abbreviated action which requires two attention markers.






