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Abstract— This paper presents an imitation learning system
capable of learning tasks in a complex dynamic real-time en-
vironment. In this paper we argue that social learning should
be thought of as a special case of general skill learning, and
that the biases it presents to the skill learning problem radically
simplify learning for species with sufficient innate predisposition
to harness this power. We decompose skill learning into four
sub-problems, then show how a modification of Roy’s CELL
system [1] can address all these problems simultaneously. Our
system is demonstrated working in the domain of a real-time VR
game,Unreal Tournament.

Index Terms— Program-Level Imitation, Social Learning, Rep-
resentation, Computer Games.

I. I NTRODUCTION

H UMAN-like intelligence requires an enormous amount
of knowledge — solutions to the hard problems of

survival and reproduction, which for our species have come to
involve complex social and technological manipulations. Some
of these solutions are passed to us genetically, and some are
learned by an individual through trial and error. For humans,
one key source of knowledge is culture [2]. Byculture here
we mean any knowledge an agent derives from conspecifics
by non-genetic means.

Social learningmay have evolved because it is safer than
individual learning. However, given the vast complexity and
rapid change we observe in human culture, we might imagine
it is also fundamentally moreefficient, at least for humans.
In order for this strategy of knowledge (or rather behaviour)
acquisition to be more efficient, the process of social acquisi-
tion for the average individual must be significantly less time
consuming than trial-and-error learning.

In this paper we demonstrate how imitation learning can in
fact provide the extra information a skill-learning algorithm
needs to converge quickly. We focus primarily on what Byrne
and Russon callprogram-level imitation [3], that is, the
acquisition of complex skills through social learning, rather
than theaction-level of fine, precisely-timed motor control
often emphasised in the robotics literature [4], [5]. In this
paper we begin by describing the requirements of social and
skill learning. We then present an imitation learning system,
COIL, which we base on an existing real-time social learning
system for robots, CELL [1]. We test COIL on two different
imitation tasks in the domain of a real-time VR game,Unreal
Tournament.We then analyse the complexity of the learning
issues we encounter, and discuss implications for real, full-
time social learning systems like people.
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Fig. 1. Task learning requires learning four types of things: relevant
categories of actions, relevant categories of perceptual contexts, associations
between these, and a prioritised ordering of the pairings. Assuming there is
no more than one action per perceptual class, ordering the perceptual classes
is sufficient to order the pairs. See text for details.

II. TASK LEARNING

A. Requirements

There are at least four separate types of things that are
learned in the process of learning a task (see Figure 1):

1) Perceptual classes:What contexts are relevant to select-
ing appropriate actions.

2) Salient actions:What sort of actions are likely to solve
a problem.

3) Perception-action pairings:Which actions are appropri-
ate in which salient contexts.

4) Ordering of pairings:It is possible that more than one
salient perceptual class is present at the same time.
In this case, an agent needs to know which one is
most important to attend to in order to select the next
appropriate action.

With respect to perception / action pairings, our research
in primate task learning indicates that there should only be
one action possible per salient perceptual context, but there
may be many perceptual contexts in which a particular action
may be relevant [6], [7]. Also note that although we mention
perceptual contexts, we obviously do not mean the full context
of all sensory information from a moment in time. Such a
representation leads to a failure to generalise. Rather, detailed
perception at any particular moment tends to be focused on a
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few salient cues which will hopefully help disambiguate the
current action-selection problem [8].

Clearly solving four problems simultaneously makes learn-
ing new skills a very hard problem, but equally it motivates
social learning. In this paper we extend and analyse work
showing that, in a social context, sensing and action categories
can be recognised by their co-occurrence [1]. It should also
be possible to induce sequential and hierarchical ordering [9],
though we will not demonstrate that here.

B. Skill Acquisition via Imitation

We describe the process of imitation learning using two
agents: theexpert demonstrates the completion of some task,
and theimitator learns while observing the expert acting, then
attempts to act in kind. We use the termexpert, as it implies
that the imitatee possesses skills worth acquiring, and that they
will act broadly optimally (at least according to their own
knowledge) when carrying out a task. We avoid the terms
model, because of potential ambiguity with the underlying
learning model, andteacher, because of the implication that
the imitatee is aware of and indeed actively assists the imitator
[10], neither of which is necessarily the case.

Learning by imitation imposes several constraints which
make the task-learning problem more tractable. For example,
the imitator will observe a sequence of actions executed by the
expert while carrying out the given task. These actions form
a subspace of the imitator’s whole action space, thus reducing
the search time for salient actions. In contrast, individual
learning strategies such as reinforcement learning [11] have by
definition the disadvantage of the agent having to execute an
action in order to discover its merit or, perhaps more crucially,
its demerit. In our application domain of Unreal Tournament,
this might amount to a bot having to kill a team-mate or fall
into a ravine to receive the associated penalty and learn that
this is a bad thing to do. Social learning therefore not only
provides for faster and more practical learning, but also for
safer learning [12], [13]. Individual learning algorithms also
require the existence of areward function [11]. These are not
always easily constructed (see Section VIII-C below). Social
learning of course on some levelrequiresindividual learning;
here the reward function derives from replicating observed
correlations.

This model of learning assumes of that imitators are able
to map the expert’s actions into their own action space; this
requires at least a partial solution to thecorrespondence
problem [14]. Again, it is easier to see how this might have
evolved in nature or be built in AI than many more complex
reward functions. As we will see below, this does require a
significant amount of endowed knowledge, though again there
is considerable evidence that such endowment has biological
equivalents [2], [15]. We discuss this further in Section VIII-B.

Since we assume that the expert is performing some (possi-
bly dynamic and hierarchically structured) sequence of actions
to the end of completing a task, we can also assume that
certain actions are more likely to precede, co-occur with or
follow certain environmental states. The imitator can use these
observed temporal relations to calculate the most probable

causal links between perception and action. This satisfies the
third sub-problem stated above. Note that finding suitable
perception-action pairings both informs and is informed by
the process of finding salient perceptual classes. This indicates
that task learning is not a simple sequential process, but
rather consists of an ongoing process of gathering data, and
building and testing models. Such solutions are common now
in machine learning [16], [17]

The final piece of the task learning puzzle, prioritisation,
requires that the imitator recognise which action is executed
when the environmental state simultaneously occupies multi-
ple perceptual classes. While we don’t demonstrate this here,
our latest work adapts a Bayesian technique calledAutomatic
Relevance Determination[18, p. 15] to rank these classes
according to their bearing on observed action selection. Here
again co-learning priority should help facilitate and clarify
otherwise noisy correlations for the other three classes of
learning problem.

In theory then, imitation facilitates all four component
sub-problems of task learning we described. Given some
level of prior bias, the regularities expressed in the expert’s
performance may provide enough information to sufficiently
constrain the learning problem to the extent that even with
noise and ambiguity that result from being an external ob-
server, the learner may learn faster with imitation than by trial
and error alone. What remains is to develop a learning system
specifically geared towards picking up on those regularities. To
be plausible, this learning system should work in real-time on
continuous-valued data for both sensing and acting. We now
look at an existing language-learning robotic system which
satisfies these desiderata, after which we will describe how it
may be adapted for general-purpose task learning.

III. CELL: A WORKING LEARNING SYSTEM

The language-learning system in question is Deb Roy’s
CELL (Cross-channelEarly Lexical Learning) system [1],
[19]. As the name suggests, CELL was designed to emulate
lexical acquisition in infants; specifically, to associate views of
a given target object with spoken words describing that object.

Roy’s experimental setup consisted of a camera mounted
on an articulated robot arm which moved around an object to
capture it visually from different angles. The sounds it was
trained on were the utterances of a series of parents during
sessions of natural1 interaction with their infants, and their
joint interaction with the target objects of the experiment.
This occurred independently of the picture data capture, and
the parents were not informed that their interactions should
achieve any specific goals. A noise-cancelling microphone was
used, and the utterances were subsequently digitally sampled
for processing. The association of words to pictures was
carried out artificially by an analyst noting the period during
which a certain object was the focus of attention, and then
pairing that period of sound with pictures of that object.

The CELL learning model consists of five main stages (see
Figure 2 and details below in Section V):

1At least, as natural as possible given the circumstances of a controlled
laboratory experiment.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS–PART B: CYBERNETICS, VOL. 37, NO. 1, JANUARY 2007 3

Raw Sensor Data

Feature Extraction

Co−occurence Filtering

Event Segmentation

Recurrence Filtering

Mutual Information Filtering

L−channels
S−channels

L−events
S−events

LS−events

Lexical candidates

Lexical items

Fig. 2. The inputs and outputs of each stage of CELL (after Roy [1]).

1) Feature Extraction— salient features of the input sensor
stream are extracted and isolated in separate Linguistic
and Semantic datachannels.

2) Event Segmentation— the channels are divided tempo-
rally into chunks calledeventsandsubevents.

3) Co-occurrence Filtering— Linguistic and Semantic
chunks which co-occur are linked together and stored
in a short-term memory buffer.

4) Recurrence Filtering— any paired chunks which are
repeated in close temporal proximity are extracted and
stored in a mid-term memory buffer. These pairs are
lexical candidates.

5) Mutual Information Filtering — cross-channel
Linguistic-Semantic mutual information is calculated
for all lexical candidates. Those for which the value is
sufficiently high are output (into a long-term memory
buffer) aslexical items.

Comparing CELL with our task-learning model, we note
that Roy’s system also completes, in a domain-restricted sense,
most of the sub-tasks we described. If we assume CELL’s
task is to assign spoken words to given visual input, then
we can think of CELL’s action space as consisting of all
possible vocalisations, and its perception space as containing
all possible views (the converse is the case if we assume
the task is to match objects to given speech). Candidate
perceptual classes (visual representations of object properties)
are created by applying the Feature Extraction and Event
Segmentation stages of CELL to the camera data. A similar
process applied to the microphone data discovers candidate
actions (strings of phonemes). Co-occurrence, Recurrence and
Mutual Information Filtering reduce these sets of candidates
to those which are highly salient for completing the given
task. Perception-action pairing also results from these stages
of processing. Finally, a prioritisation for the pairs may be
inferred from the mutual information value calculated during
CELL’s final stage: the higher the mutual information, the
higher the priority.

Looking at language learning in this way, one could argue
that CELL is already capable of imitation learning, again in
a domain-restricted sense. Knowledge about how words and
objects are linked is copied from external demonstrations of
these links by an expert. However, language learning is clearly
a special case of social learning, in that it isnecessarilysocial,
because a learned lexicon has much less utility outside of
the social context2. There is no implication that the observed
behaviourof the expert (ie. holding up an object and repeating
its name) is particularly useful or should be generally adopted.
Also, in some ways, CELL is not sufficiently general for task-
learning. For example, language is by its nature sequential, but
a task may require performing two actions simultaneously.

IV. L EARNING SCOPE INDIFFERENTDOMAINS

These facts motivate our adaptation of CELL for application
to more generic imitation tasks. To differentiate our adapted
model from Roy’s original, we will refer to it asCOIL —
Cross-channelObservation andImitation Learning.

To explain this adaption we need again to consider the more
general definitions of perception and action, as described in
Section II-A. To model human-like learning, as Roy did, we
have chosen to impose similar constraints upon the system
as would be present for human imitation. Specifically, we
assume COIL is embedded in an embodied imitator agent
which remotely observes an embodied expert agent acting in a
shared environment. Bearing in mind the goal of task learning
by imitation, data gathered by the imitator can be categorised
into two channel types: Action and Perception. The Action
channels receive data relating to the actions executed by the
expert while completing the task. The Perception channels
receive data relating to the perception of the expert, which is
then used to determine the context of actions. Of course, the
context determining actions includes internal state unlikely to
be observable by the imitator, as well as external state which,
while visible, will not perfectly correspond to the expert’s
view.

As Roy points out [1, ch. 2], human infants possess innate
biases which make learning tractable (see also [20]). This is
reflected in CELL by, for example, the extraction of shape and
colour characteristics from captured images, and the automatic
recognition of phoneme boundaries. COIL is no different: the
success of the Feature Extraction and Event Segmentation
stages depend upon the imitator’s biases to filter out extra-
neous sensor information and parse continuous behavioural
/ perceptual data streams into representative categories [21].
Thus, the data going into the ‘main’ processing stages of
COIL (Co-occurrence, Recurrence and Mutual Information
Filtering) consist of select, segmented Action and Perception
channels. Details of these stages can be found below, but the
key question for now is: what is the output of the model?

In high-level terms, the resultant chunks stored in COIL’s
long-term memory buffer represent actions paired with percep-
tions. Since the goal of an imitator is (presumably) to act, we
could view these chunks as building blocks for a specification

2Though note again that the identification of salient categories implicit in
label learning may be useful to an agent, even if that agent never speaks.
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of imitated behaviour. If a given perception has been seen to
instigate some action, this could be described asmotivation.
Conversely, if an executed action has been seen to bring about
some perceptual state, this could be calledexpectation. Hence
the output of COIL’s fifth stage consists ofMotivation Items
and Expectation Items, which I henceforth refer to collec-
tively asM-E Items. These chunks are similar to Drescher’s
context/action/resultschemas [22], except that COIL does not
go so far as to merge its observedcontext/action(Motivation)
and action/result (Expectation) pairs. The issue of deciding
how to act based upon M-E Items is beyond the scope of
CELL’s original framework, but, since it is such a crucial part
of the imitation process, we have added extra stages to COIL
specifically for this purpose (see Section V-F).

Note that M-E Items correspond only to sense-action pairs
as described in our original model. Providing that perceptual
categorisation is strict enough so as to always create mutually-
exclusive perceptual categorisation, then prioritisation of the
pairs is unnecessary. If, however, in order to be generally
powerful and reusable M-E Itemsdo sometimes include non-
exclusive perceptual state, then a prioritisation will have to be
inferred. This again goes beyond the scope of CELL.

In the next sections, we realise this abstract description of
COIL. We first introduce our chosen task domain and the
initial test behaviours to be imitated therein. This is followed
by a detailed breakdown of each stage of the model, supported
by implemented examples, and contrasted with examples from
Roy’s implementation.

A. The Real World, Robotics and Realistic Simulations

Much recent imitation research makes use of robots (or at
least robot simulators) as the platform to test new models
and algorithms [23]–[25]. Robots have many advantages as
experimental platforms: they operate in the real world, in real
time and face many of the same problems as human imitators
while being able to exploit similar constraints (e.g. the physics
of gravity, optics and impact). Robots like humans must deal
with noisy and incomplete sensor information, imperfect motor
control, and dynamic, unpredictable surroundings.

On the other hand, many practical issues associated with
robots can inhibit research. Robots may severely exaggerate
the effects of noise since it is difficult to tune them to the
precision achievable by a human infant learning hand-eye
coordination. Maintaining them takes considerable cost and
expertise that is orthogonal to artificial intelligence, often
requiring special technicians in the laboratory. As a result
of these constraints, robot tasks seldom approach anything
like the complexity of animal behaviour. Animal behaviour
is characterised by multiple, dynamic and conflicting goals
in environments populated with agonistic agents. It also is
characterised by phased or cyclic activity operating on multiple
concurrent time courses. Because robot behaviour is currently
so severely constrained, concentrating all research on these
platforms can result in overlooking combinatorial issues in
learning and action selection that might be quite accessible in
other platforms, such as artificial life [26], [27].

For this reason, we have opted for what we believe is a
‘best of both worlds’ domain: real-time 3D VR computer

games. This is certainly not a new approach, and there are
many AI researchers already working in this domain [28]–[31].
Although games do avoid some of the technical problems of
robots, they do introduce others. Again, perception and action
may be far less reliable than for a skilled animal, and further
they can be unreliable in ways that are bizarre by animal
standards (e.g. failure to report the presence of a wall blocking
a movement.) However, they are real-time and highly dynamic
environments which require the pursuit of multiple goals
(defeating aggressive opponents, curing injuries, accumulating
weapons and/or other tokens, rescuing innocents, assisting
teammates). They contain both continuous and discrete actions
and perceptions. Also, importantly, the are not constructed
by the experimenters as biased “toy” domains [32]. Rather,
they present tasks on a general-purpose platform that are
challenging for even human intelligence.

We now describe the game we have chosen,Unreal Tour-
nament, highlighting its suitability for our purposes.

B. Unreal Tournament

Unreal Tournament(UT) is a commercially released, multi-
player ‘First Person Shooter’ [33]. As the term suggests, the
user has an agent’s-eye view of the game and direct, real-time
control of an avatar’s actions. UT also supports remote control
of agents by sending commands to the game server over a
network. This provides a framework for allowing external
programs to direct an agent’s actions. Such AI-controlled
agents are commonly known asbots in the literature and
gaming community. The game server, in turn, sends two
categories of sensor data back to the client. The first is
synchronous: at regular intervals the client is informed of
the agent’s status (e.g. health, ammo, current weapon, etc).
The second is asynchronous: for example whenever a wall is
bumped, a footstep is heard or damage is taken.

UT offers the opportunity for real-time interaction and
learning in a quasi-real-world environment. The game engine
simulates physics, albeit simplified, such as collisions (of
bounding polyhedra), gravity, and sound and light transmis-
sion. The bots’ sensor data are incomplete in the sense that
only a reduced subset of the game variables are observable;
the bots have limited virtual sensors. For example, the imitator
cannot know the health state of the expert, although this may
well affect the expert’s choices. However, what sensors are
available are not subject to noise in the same way physical
sensors would be. Neither are bots hampered by imperfect
motor control. In fact, low-level movement (ie. that of arms
or legs) is dealt with by the graphics engine, and bots can
only be externally manipulated at a higher level (ie. move
forward or rotate). This may seem unrealistic to those familiar
with fine gesture simulation (e.g. [34], but note that there is a
good deal of neurological data indicating that the ‘higher’ level
brain functions we are presumably simulating (e.g. frontal
lobe control of behaviour) can also operate at a similar fairly
gross abstract level [35], [36]). Much of the natural imitation
literature doesnot deal with precise replication of gesture
[3] — or even using the same effector on an affordance.
For example, Custanceet al. describe agents that imitate a



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS–PART B: CYBERNETICS, VOL. 37, NO. 1, JANUARY 2007 5

demonstrator pulling a peg out with fingers by pulling it out
with their teeth [37].

In summary, we believe that UT is realistic enough to allow
the study of human-like imitation, but simple enough to enable
us to get at core learning problems relatively quickly. To make
explaining the mechanics of the COIL model clearer, we first
take a moment to set out the initial task behaviours that we
designed to test COIL’s aptitude for imitation in this domain.
We will then use these example tasks in the description of the
COIL algorithm.

C. The First Task Scenarios

UT ships with an environment editor,UnrealEd[38], which
we used to create game worlds containing (and, in fact,
defined by) the features necessary to complete our initial
tasks. These simplified domains are much like the simplified
domains used by Roy [1] and many other developmental-
learning researchers. ForTask 1, the expert demonstrator
was a human-controlled bot, and the imitator was the COIL
system ‘embedded’ in an AI-controlled bot. The imitator was
programmed to follow the expert, remaining a fixed distance
behind and to one side, so as much perceptual information
as possible was shared. The only data made available to
the imitator was that received from its own sensors. Latent
variables within the expert (such as health) were invisible, just
as they are to humans playing the game.

The environment itself was a single cuboid cavern aligned
with the world axes3. Near each corner, equidistant from the
nearest two walls, was placed ahealth vial. Such vials are
visible both on screen and on sensors, provided they fall
within a bot’s field of view (view cone). Once picked up they
disappear, reappearing (re-spawning) after a short fixed time
interval. The task demonstrated by the expert was simply to
locate and collect vials as quickly as possible.

The expert, imitator and cavern remained unchanged for
Task 2, but the health vials were replaced by a total of sixteen
bots. These bots were recognisably from two different teams,
half were to be considered ‘friends’, and half ‘enemies’. The
task demonstrated was to locate and fire at enemy bots while
avoiding friendly ones. A bot which is hit by weapon fire takes
damage, affecting its internal health score, and is ‘killed’ when
this score reaches zero, disappearing from sensors. The bots
themselves were unarmed and posed no threat to either the
expert or the imitator.

A full account of the scope of these tasks to test the breadth
of COIL’s imitation abilities will be given in Section VI. First
we describe the detail of COIL’s modelling procedures in the
following section.

V. THE COIL SYSTEM

Our first theoretical COIL model, as detailed below, is as
close an adaption as we found possible of CELL to a broader
imitation learning context. We now look at each stage in depth:
its input, its processes and its output. To aid understanding,
we also explain how each stage was applied to Task 1, and
compare it with Roy’s implementation.

3So the floor plane was horizontal and the walls were vertical.

A. Feature Extraction

The initial input into the first stage of the model is in the
form of ‘raw data’ from the imitator bot’s sensors. Each sensor
cycle provides data about objects of note in the environment,
specifically the imitator bot’s own state, and the visible or
audible state (such as location or actions) of other bots, items,
weapons, navigation nodes, projectiles, etc. These data are
extracted and / or merged into differentchannels. Conversely,
a given channel should receive data pertaining to some specific
feature of interest in the environment. COIL allows a channel
to be one of two types:Action or Perception. Henceforth, we
will use the termchannel setto refer to the group containing
all channels of a given type.

Our goal for Task 1 was to extract a minimal but sufficient
set of features to allow learning of the task. There were
only two types of action necessary to complete the task
effectively: turning and moving4. We thus needed to build
biases for detecting these kinds of behaviour into our system
(see Section IV), and so created two Action channels: one
for monitoring rotation in the expert, and one for monitoring
motion. Using a piece of memory state in the imitator bot,
we designed an algorithm to detect change in attitude of the
expert and output the signal to the rotation channel. A similar
algorithm detected change in position relative to attitude and
fed that data into the motion channel.

Due to the simplicity of the environment, only one type of
perceptual information is required for completion of Task 1.
We know that the only visible items are the vials to be
collected, and that there are no other obstacles, so tracking the
bearing of the nearest item to the centre of view is sufficient.
This single Perception channel receives data from a more
complex algorithm in the imitator bot which uses the item
and bot sensors to calculate the relative bearing of each visible
item to the expert, and returns the least of these.

Roy’s experiment utilised two sensors and a total of three
channels. Microphone data were fed into a single Linguistic
channel ready for phoneme analysis. Camera data were fed
into two Semantic channels: one transformed into colour his-
tograms, and one into shape histograms. Using noisy physical
as opposed to clean virtual sensors has disadvantages (see
Section IV-A), but applying COIL to a real-world problem
is nevertheless an interesting open research area. As with
Roy’s implementation, after feature extraction the relevant data
resided in three channels. The next stage is to separate the
streams into discrete events which will eventually form the
basis for the desired M-E Items.

B. Event Segmentation

Once the relevant data have been diverted into channels,
two levels of event detection occur. Top-leveleventboundaries
span the given channel set and are determined by a condition
on all these channelssimultaneously. The resulting chunks are
known asA-eventsor P-events(depending upon the channel
set in question). Lower-levelsegmentboundaries also span
the channel set but, in contrast, are determined by conditions

4By movingwe mean translational movement along the floor plane.
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on eachchannelindividually. In other words, every channel
contributes segment boundaries that then span every other
channel in the same channel set.A-subeventsare consequently
defined as any continuous sequence of segments within an A-
event, across any subset of Action channels.P-subeventsare
analogously defined.

The Feature Extraction process assigned representative
‘labels’ (real numbers) to pre-defined classes within each
channel. For the rotation channel, the classes wereturning
anticlockwise(represented by−1), not rotating(0) andturning
clockwise(1). For the motion channel, they weremoving other
than forward (−1), not moving(0) andmoving forward(1).
The bearing channel classes wereno items visible(100), item
anticlockwise(−1), item ahead(0) anditem clockwise(1). In
addition to the choice of channels, the classes themselves also
reflect the imitator’s innate knowledge brought to the task at
hand and provide a bias toward tractable learning.

Given the data classes, designing event recognisers was
relatively straightforward.A-events (events which span the
Action channels) were triggered by any change in expert
bot state. In other words, an A-event started whenever the
expert moved or turned (or both) and ceased when it stopped.
The gaps between A-events represented times in which the
expert was still. A-event segment boundaries were triggered
by a change in state in either of the Action channels, for
example: a change in the direction of motion from forward to
strafing sideways.P-events(events which span the Perception
channels) were triggered by any change in the bearing channel
state. So if, for example, an item that was previously clockwise
of the expert becomes ahead, a new P-event commenced. In
our implementation, P-events formed a continuous sequence,
with the start of a new event triggering the end of the prior.
No further segmentation of P-events occurred.

Linguistic-event (L-event) boundaries in Roy’s model were
triggered by the commencement or cessation of speech input,
and so the events themselves consisted of spoken utterances
delimited by silence. Segment boundaries coincided with prob-
able phoneme boundaries generated by a Recurrent Neural
Network. Semantic-events (S-events) worked slightly differ-
ently in that they were not temporal, but a collection of static
pictures taken of the object in question from different angles,
or object view sets. As such, they had no constituent seg-
ments, and only contained subevents differentiated by channel
span, ie. colour and shape. This allowed Roy to control the
complexity contribution from at least one channel, which we
could not.

C. Co-occurrence Filtering

Co-occurrence filtering is a simple procedure which
searches the segmented channel sets for A-events and P-events
which overlap in time. Such a pair of co-occurring events is
termed anAP-event, and shunted toShort Term Memory
(STM), which is implemented as a queue.

All the channels receive data concurrently due to the imi-
tator’s fixed sensor cycle frequency5. Since P-events covered

5Again, this may not be as biologically implausible as it sounds; the brain
seems to also work to synchronise sensory input [39].

the entire timeline for the duration of each simulation, every
A-event overlapped with at least one P-event, although the
inverse was not necessarily the case. When a coincident pair
was found, they were copied to STM as anAP-event: a
period of continuous action coupled with a period of uniform
perception.

Roy’s object view sets were timestamped, as were the utter-
ances, which allowed overlap to be established. Consequently,
an LS-event in his model consisted of a spoken utterance
paired with an object view set.

D. Recurrence Filtering

The arrival of an AP-event in STM initiates a comparison
to be made between the new member and each of the existing
members. The constituent A-events of the pair of AP-events
under comparison have already been subdivided into segments.
Using some predefined metric on A-subevents,da, every A-
subevent from the new AP-event is compared with every A-
subevent from the other. If the distance between them falls
below a predetermined threshold,ta, then the two subevents
are marked as matching. The same process is carried out for
P-subevents.

Given the matched pairs of subevents generated by the
above process, the new AP-event is scanned for co-occurring
matches. If a matched A-subevent coincides with a matched P-
subevent, their partners in the other AP-event are checked for
co-occurrence. If they too coincide, then a recurrent match has
been found. Such a match is used to create anM-E Candidate,
and these are stored in another buffer:Mid Term Memory
(MTM).

An A-subevent in this instance is a continuous sequence of
motion and / or rotation segments. To measure the distance
between such segments, we defined the action distance metric
initially as follows:

da(x, y) =
∑

c∈C

|ȳc − x̄c|
|C| (1)

wherex andy are A-subevents in A-space,C is the set of all
channels spanned byx andy, andx̄c andȳc are the mean class
values for the given channelc for each respective subevent.

For example, let bothx andy be A-subevents representing
uniform clockwise turns. So,C = {R} (just the rotation
channel),|C| = 1, x̄R = 1 and ȳR = 1. Then we have:

da(x, y) =
|1− 1|

1
= 0 (2)

in other words, the two A-subevents are coincident in A-space.
If, however, we lety represent a uniform anti-clockwise turn
(so ȳR = −1), we have:

da(x, y) =
|1−−1|

1
= 2 (3)

P-subevents are blocks of uniform perception, and the percep-
tion distance metric was defined similarly:

dp(x, y) = |ȳB − x̄B | (4)
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No sum is necessary, since all P-subevents span and only
span the bearing channel (B). The thresholdsta and tp were
initially both set at 0, so only coincident A- and P-subevents
were regarded as matching. Recall that AP-events in STM
undergo recurrence filtering whenever a new AP-event arrives.
When a pair of matching A-subevents co-occurs with a pair of
matching P-subevents, then one of the A-subevents is taken as
representative and coupled with one of the P-subevents. This
couple is anM-E Candidate, which is then added to MTM.
Examples of M-E Candidates could include a ‘clockwise turn’
coupled with an ‘object clockwise’, and a ‘forward motion’
coupled with an ‘object ahead’.

Bearing in mind that L-subevents in Roy’s implementation
consisted of sequences of phonemes, the metricdl that he used
was an acoustic distance metric based on the likelihood that
two sequences were generated by the same Hidden Markov
Model. He restricted the search by only comparing phoneme
sequences of less than one second duration containing at least
one vowel. S-subevents were either colour or shape view
sets in the form of histograms. The visual distance metric
used,ds, was based upon aχ2-test for histogram similarity.
The match thresholds were set relatively low, and so many
Lexical Candidates were created. The metrics Roy selected
were well-established; unsurprisingly, there are no conventions
for measuring the distance between two generic actions or
perceptions. Also, Roy assumed ‘close’ temporal proximity of
similar LS-events (justified by his study of highly repetitious
infant-directed speech), and implemented STM as a queue of
around just five items. We cannot make this assumption, as
action-perception pairs which arise from a task demonstration
could be separated by significant time intervals. Thus our
STM was much bigger (typically 25 items), and this affected
efficiency (see also Section VII).

E. Mutual Information Filtering

Providing the number of Lexical Candidates in MTM ex-
ceeds some fixed minimum, mutual information filtering oc-
curs whenever recurrence filtering generates a new candidate.
Before attempting to explain the process, some more terms
need to be defined:
• A-spaceand P-spaceare metric spaces with metricsda

anddp respectively.
• An M-E Candidate is equivalent to a point in A-space,

coupled with a point in P-space. These points are known
as the candidate’sA- andP-prototypes.

• An A-unit is a sphere in A-space of radiusra, with
an A-prototype at its centre (P-categoriesare defined
analogously).

• An A-unit coupled with a P-category is called anM-E
Item.

• An M-E Candidatematchesan M-E Item if the candi-
date’s A-prototype falls within the item’s A-unit, and the
candidate’s P-prototype falls within the item’s P-category.

And so, the algorithm runs as follows:
1) An M-E Candidate is selected. Its A-unit and P-category

are initialised to have sufficiently small radii so as to
contain no other A- or P-prototypes.

2) ra is increased until another A-prototype falls within the
A-unit.

3) The mutual information for this configuration of radii
is calculated [1, chapter 3]. If it exceeds the previous
maximum, then it is stored along with the current radii
configuration.

4) Steps 2 and 3 are repeated until every other A-prototype
has been included in the A-unit.

5) rp is increased until another P-prototype falls within the
P-category.ra is reset to its initial state.

6) Steps 2 to 5 are repeated until every other P-prototype
has been included in the P-category.

7) Steps 1 to 6 are repeated for every M-E Candidate in
MTM.

8) If the maximum mutual information exceeds some
predefined threshold, then the M-E Candidate and its
optimal radii are used to create an M-E Item (see above).
This is stored inLong Term Memory (LTM). The M-E
Candidate, and all those that match the new M-E Unit,
are removed from MTM.

For Roy, an L-prototype was a phoneme sequence in L-
space, the space of all such sequences. An L-unit was therefore
a sphere of phoneme sequences that ‘sound sufficiently like’
the prototype. An S-prototype was a colour or shape view set
in S-space, the space of all such view sets. An S-category
was thus a sphere of view sets that ‘look sufficiently like’
the prototype. So, a Lexical Unit was effectively a spoken
word paired with a viewed object, both with allowances for
individual variation. Roy used a linearly-interpolated prior to
smooth mutual information values for infrequently observed
pairs. Later versions of COIL included this function, and
our latest work explores alternatives to calculating mutual
information (see Section VII-B).

F. Generating Behaviour

Half of the challenge of imitation is acting upon what
has been learned, but this function is not incorporated into
CELL (although Roy does practically demonstrate his acquired
language knowledge in other applications [1, chapter 6]).
Therefore we have added modules to COIL to complete
the ‘imitation loop’ — to facilitate acting upon acquired
behavioural knowledge. These modules, along with their the-
oretical basis, are the subject of this section.

We have seen how, through observing the completion of
a given task by an expert, COIL can construct a ‘dictionary’
describing the apparent action-perception relationships that are
required for, or are a consequence of, the completion of that
task. However, the fundamental question of how to act upon
said knowledge remains, and is nontrivial. To answer this
question, we need to consider what the resultant M-E Items
represent in more detail.

In section IV, we suggested thatmotivation implies a
perception that triggers an action, andexpectationimplies an
action that predicts a perception. Recall that an M-E Item is
an A-unit coupled with a P-category, and that these, in turn,
are derived from an A-subevent which coincides with a P-
subevent. The priority of these subevents indicate whether a
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given M-E Item is in fact a Motivation or Expectation Item.
If the initiation of the corresponding P-subeventprecededthe
A-subevent (the perception preceded the action), then it is a
Motivation Item; if the A-subevent was initiated first, then it
is an Expectation Item.

We discuss to what extent COIL solves acorrespondence
problem [14] in Section VIII-B, but for now, suffice it to
say that the expert and the imitator havesimilar embodiment;
their avatars have identical body configurations in UT. This
being the case, we can assume that an imitator capable of
discerning the perceptual state of an expert, can use the same
representation for its own perceptual state. This allows the im-
itator to search its acquired Motivation Items for those which
match its state (via the P-category), and retrieve candidate
actions for execution (via the A-unit). If the Motivation Items
cover the imitator’s perception space, then the above method
provides a complete specification for behaviour, albeit with a
simple reactive mapping between state and action. Expectation
Items are not as obviously applicable in terms of determining
action, and for Tasks 1 and 2 the reactive behaviour provided
by Motivation Items alone has been adequate for effective
imitation. We are currently exploring the potential for using
Expectation Items to test the correctness of learned behaviour,
and for more complex planning in tandem with Motivation
Items (see Section IX), but for now we look at our basic action
selection method and its utility in completing Task 1.

Recall that the possible perceptual classes for Task 1 related
to the possible positions of the nearest item to the centre
of the bot’s view cone:no items visible, item anticlockwise,
item aheadand item clockwise. Having observed the expert
collect vials for some period of time, the imitator switches6

into acting mode and begins to ‘observe’ its own perceptual
class instead of that of the expert. At the instance at which
acting commences, the imitator searches LTM for Motivation
Items which match its current state. If there is more than one,
the Motivation Item with the highest mutual information value
attached to it is chosen. If none match, then the imitator has
not learned what to do in this circumstance; depending on the
experimenter’s preference, it either returns to observing, or is
coerced into taking a random action in the hope of entering a
new perceptual class.

Having decided on a Motivation Item to ‘act upon’, the ac-
tion that is ‘most representative’ of its component A-prototype
is selected for execution. This is calculated by measuring the
distance between the A-prototype and contrived ‘pure actions’
(that is, a set of A-subevents,Y = {yi}, for which eachȳi is
equal to an action class label — see Equation 1). The action
classes which are comparable depend upon which channels
are spanned by the A-prototype. The action closest to the
A-prototype in A-space (measured using the action distance
metric in Equation 1) is then executed.

For example, suppose that the selected Motivation Item
contains an A-prototype recorded from the Rotation channel
only, where the expert turned clockwise for 90% of the time,
then paused for 5%, and finally turned anti-clockwise for 5%.
The mean rotation class value for this A-prototype is:

6Done manually, but could be made automatic - see Section IX.

x̄ = (0.05×−1) + (0.05× 0) + (0.9× 1) = 0.85 (5)

bearing in mind that the rotation class labels (and thus the
‘pure actions’) areturning anticlockwise(−1), not rotating
(0) andturning clockwise(1). So, the closest action isturning
clockwise, which has a distance of:

da(0.85, 1) = |1− 0.85| = 0.15 (6)

The action selected for execution is thereforeturn clockwise.
The particular action classes that the imitator can recognise in
the expert represent a bias in COIL for recognising actions in
the imitator’s own repertoire. This can again be partly justified
due to the similar embodiment of the imitator to the expert
(see Section VIII-B). The commandturn clockwise(with a
parameter angle), for example, exists as a method in the bot
controller module.

For Task 1, the imitator was programmed to retrieve a new
action every time its perceptual state changed (checked at each
sensor cycle), or to repeat the previous action if the state
remained unchanged. We defined the actions typically to be
short and discrete (such asturn clockwise 20◦), for several
reasons:

1) The sensor cycle rate was slow enough that at maximum
rotation velocity (for example), whole perceptual classes
could be turned through in between cycles, missing an
opportunity to change course of action.

2) Most of the available bot commands must be given
a numerical parameter, so true continuity of action is
difficult.

3) The game server requires some delay between com-
mands. For example, trying to execute an action every
sensor cycle is impossible.

It is quite possible to build apparent continuous motion out
of small discrete ‘decisions’, particularly for embodied agents
where their physical plant does a certain amount of its own
integration, though it is also possible to build a system with
dedicated integration modules [40]–[43].

Clearly, the quality of the imitated behaviour depends upon
both the biases we have built into COIL for the task in
question, and the quality of the demonstration given. The next
section looks at our results in this area, the problems we have
overcome, and those we are yet to.

VI. PRELIMINARY RESULTS

Prior to giving our experimental results, it would seem
appropriate to explain our choice of tasks in terms of hy-
pothesising COIL’s ability to solve a wider range of imitation
problems.

Task 1 is designed to be an elementary task to test the
correct functioning of the different system components. Per-
ception space is partitioned, so there are no concurrent com-
peting perceptual classes. However, the observed actions (ie.
turning and rotating) are real valued with varying duration and
may overlay multiple perceptual classes: they are not naturally
discrete. Also, the bots sense with respect to absolute (world)
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TABLE I

CORRECTBEHAVIOURS FORTASK 1

Perceptual Class

Policy Item↖ Item ↑ Item↗ Item×
O1 Turn↖ Move ↑ Turn↗ Turn↗
O2 Turn↖ Move ↑ Turn↗ Turn↖

NO1 Turn↗ Move ↑ Turn↗ Turn↗
NO2 Turn↖ Move ↑ Turn↖ Turn↖

co-ordinates; COIL must translate these readings into expert-
centric co-ordinates to allow easier recognition of the expert’s
objectives. Task 2 requires all of the above, but additionally
COIL must arbitrate attention by prioritising multiply satisfied
perceptual classes (see Section VI-B for examples). Task 2
necessitates firing a weapon which, although being more
easily discretisable, introduces a new problem: such a short
action could get lost or ignored amongst long continuous
ones, especially when the sensor sampling only occurs at
around 10Hz. We believe that most imitation problems could
be constructed by arbitrarily complex combinations of these
problems; the question of how well COIL will scale remains
to be investigated (see Section IX). We now recap the specific
requirements of each task in turn, and give the results of
COIL’s learning efforts.

A. Task 1

At the highest level, the behaviour to be imitated in Task 1
was to collect health vials. To achieve this, the imitator mon-
itored the rotation and motion of the expert, and the relative
position of the vials in the environment. There were thus two
Action channels (rotation and motion) and one Perception
channel (bearing). Broadly speaking, actions were delimited
by a change of direction (or cessation of motion), and percep-
tion by a change of perceptual class. A full specification of
Task 1 can be found in the examples of Section V.

As previously mentioned, the Perception space of Task 1 is
divided into four mutually exclusive classes:no items visible,
item anticlockwise, item aheadand item clockwise. COIL
ideally must acquire sufficient Motivation Items, by observing
the expert, to ‘cover’ this space with the correct actions to
complete the task. The actions recognised by COIL were:
turning clockwise, turning anticlockwise, not turning, moving
forward, moving other than forwardandnot moving. Including
the possibility of a null assignment arising from a gap in the
observed behaviour, there are therefore seven possible assign-
ments to each perceptual class, giving 28 possible pairings and
16384 possible behaviourpolicies, where a policy is a set of
pairs covering all salient perceptual categories7. Of these, only
four policies will correctly complete the task (see Table I).

Policies O1 and O2 are ‘optimal’ inasmuch as an agent
acting accordingly will complete the task in minimal time

7Moving other than forwarddoes not translate directly into an executable
action. In our experiments, it was mapped tomove backward, but never
appeared in any of the learned behaviour. Also, althoughnot moving, not
turning and the null assignment all have the same practical outcome for the
imitator, as far as COIL is concerned, they are different actions, which is why
we make the distinction above.

TABLE II

RESULTS FORTASK 1

% correct behaviour

Tactic 100 75 50 25 0

CW 5 3 2 0 0

ACW 4 6 0 0 0

Mix 5 5 0 0 0

Total 14 14 2 0 0

Mean correct behaviour: 85%

and with minimal wasted ‘energy’. The ‘non-optimal’ policies
NO1 and NO2 arise from the fact that turning clockwisex◦

is equivalent to turning anticlockwise(360 − x)◦. An agent
adopting either of these policies will be able to complete the
task, but, unless the imitator and vials have a very specific
initial configuration, time and energy is likely to be wasted
through the extra rotation. Any other policy will result in an
inability to complete the task.

An experimental trial consisted of COIL observing, via
an imitator bot, the demonstration of the task by a human-
controlled bot for 60 seconds. As operators of the expert, we
used three different ‘tactics’ to complete the task:

CW Tend to turn clockwise if no vials are visible.
ACW Tend to turn anticlockwise.
Mix No fixed tendency.

We carried out ten trials for each tactic, for a total of 30 trials.
To discover the imitator’s learned behaviour, we queried the
model directly with the four perceptual classes, rather than by
observing the imitator act. Attempting the latter could have
lead to further error and subjectivity affecting the results.

A ‘percentage correct behaviour’ score was assigned to
each trial, based on comparisons of the learned policy with
each of the four correct policies, taking the greatest number
of matched perception-action pairs. Each policy comprises of
four pairs, so the possible scores are 0%, 25%, 50%, 75%
and 100%. Any behaviour which does not score 100% (ie.
which mismatches all of the correct behaviours) will fail
in the imitation task, but we have made no further attempt
to assess how ‘badly’ one behaviour performs compared to
another, except by these percentage scores. We felt further
analysis would cloud the results we have and introduce a
further unnecessary layer of human interpretation. The results
are shown in Table II.

Note that nearly half of the 30 imitators learned a fully
correct behaviour. The majority of the remainder formed only
one incorrect pair; two formed two incorrect pairs (our worst
case). Additionally, 27 of the 30 learned policies matched
most closely to one of the optimal policies (15 matched O1,
and 11 O2), with only 3 which more closely matched non-
optimal policies (2 matched NO1, and 1 NO2). Clearly, COIL
performs significantly better than random action allocation
would, but what about individual learning methods, such as
Reinforcement Learning? This question is addressed in Section
VIII-C; for now we move onto the second task.
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B. Task 2

Until now, Task 2 has only been described in brief (see
Section IV-C), so the specification that follows adds enough
detail to gauge COIL’s success, but omits the lowest level
technicalities. For this task, the expert aimed to seek and
destroy ‘enemy’ bots, while avoiding ‘friendly’ bots. The
expert was armed, but the target bots were not. This time, the
environment was encoded by two Perception channels:bearing
and affiliation. The bearing channel functioned analogously
to that in Task 1, replacing items with potential target bots.
The affiliation channel received a classification of the nearest
bot as eitherfriend, enemyor no target visible. The Action
channels available to the imitator wererotation (identical to
Task 1) andfiring. The firing channel received a binary signal,
firing or not firing. As per Task 1, A-events were delimited
by absences of action, and A-subevents by a class change
on either A-channel. P-events were delimited by changes in
the affiliation of the nearest target bot, and further segmented
into P-subevents by changes of bearing class. The A-space
and P-space metrics were defined very similarly to Task 1,
with the notable exception of the firing channel: we defined
the distance betweenfiring and not firing to be significantly
farther than other distances, to reduce the probability that the
imitator would confuse the two states.

One of the key differences between the encoding of this
task and the previous one is that there are now two Perception
channels concurrently receiving data. Therefore, there are
three perceptual classes ([bearing = B], [affiliation = A] and
[bearing= B ∧ affiliation = A]) concurrently applicable to the
expert, as opposed to one ([bearing = B]). COIL must learn
to correctly prioritise these classes. For example, the imitator
might observe the expert firing at an enemy:

[bearing= ahead∧ affiliation = enemy] ⇒ firing

COIL could, however, assignfiring to [affiliation = enemy],
which would result in the imitator opening fire before the
target is in position, or to[bearing = ahead], which would
disastrously result in the imitator firing indiscriminately, at
friends and enemies alike.

There are (at least) two ways of defining correct behaviour
for this task. The first concentrates on the key states:

KS1 [bearing= ahead∧ affiliation = enemy]
KS2 [bearing= ahead∧ affiliation = friend]

These are key, because correct behaviour in these states is
most critical for completing the task. It is worth noting that,
although we use the termsenemyand friend, to the imitator
they have no intrinsic meaning; they are just two different
types of target. We specify the four possible outcomes relating
to these states, in descending order of merit, as follows:

Good Fire at enemies, avoid friends.
Safe Avoid both enemies and friends.
Trigger-happy Fire at both enemies and friends.
Bad Fire at friends, avoid enemies.

The second way of defining correct behaviour is attempting
to define an optimal policy and then calculating percentage
correct, as in Task 1. An optimal policy for this task should

TABLE III

RESULTS FORTASK 2

Key state behaviours

Tactic G S T B Mean % correct

CW 6 4 0 0 72

ACW 7.5 2 0.5 0 71

Mix 8 1 1 0 65

Total 21.5 7 1.5 0 69

be Good in the key states, turn toward a visible enemy, and
turn (in either direction) when faced with a friend.

Each trial lasted as long as it took for the expert to eliminate
all the enemy bots, typically approximately 60 seconds. Tactics
CW, ACW andMix were used analogously to Task 1, again
with ten trials each for a total of 30. Results are shown in
Table III. Decimals arise from the fact that, for this task,
maximal mutual information was often shared by a number of
Motivation Items. Where the number of Motivation Items for
two actions were equal, the action assignment for that percep-
tual class was divided in two (clearly in practise, a method of
selecting between these actions would need to be found). Note
that over two thirds of the bots tested performed correctly in
the key states, and the remainder acquired a definite tendency
against shooting friends. The mean behaviour correct score
was less for the Mix tactic, because the inconsistency in
turning direction provided fewer similar examples for the
imitators to form a fully correct policy.

The clear differentiation between firing at friends and firing
at enemies shows that COIL has succeeded in prioritising
concurrently applicable perceptual classes. Combining this
result with that of Task 1, we have some foundation for
constructing more complex behaviours to solve hierarchically-
structured and multi-part tasks. On the other hand, the lack
of perfect performance on such seemingly simple problems,
and the fact that the algorithm as it stands will notimprove
performance if it gets off to the wrong start in learning are
both troubling. We now consider the extent to which COIL
(as an extension of CELL) is currently a plausible model for
human-like imitation.

VII. A NALYSIS

Although COIL successfully learned some basic skills in
UT, a number of problems arose from our attempt to be as
faithful to the CELL template as possible. This in turn allows
us to analyse our proposal of CELL as a model of social
learning, and discuss how combinatorial issues are likely to
affect the component algorithms as the task scales. In this
section we identify the problems and propose solutions.

A. Representational Differences

COIL’s primary weakness has resulted from trying to ‘fit’
general representations of action and perception into spaces
designed for speech and vision.

CELL receives continuous microphone data, later converted
into discrete phonemes during Event Segmentation. COIL
receives continuous action data which is parsed into discrete
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action segments. The crucial difference is betweenthe spaces
in which these discrete objects lie. We omit the details of
Roy’s metric here, but intuitively phonemes can have infinite
variation and can be mapped into a continuous space where the
notion of ‘nearness’ is well-defined. In contrast, the limited set
of actions that can be initiated by a UT bot lie in a discrete
space where ‘nearness’ is not only hard to define but not a
particularly useful concept. For example, how far isjump from
fire, and what use would that information be anyway?

Comparing Roy’s Semantic and our Perceptual Categories,
another issue comes to light: segmentation of perception.
Roy deals with this by providing CELL with a static set
of images (see Section V-B), but there is no equivalent get-
around in COIL. Our system effectively forces the programmer
to segment perception space in advance through the hard-
coding of event and subevent triggers. These comparisons
point toward using a more discrete, symbolic representation
for both actions and perceptionsthroughoutCOIL. This ar-
gument is further strengthened by recent results we have
obtained using a symbolic classifier; specifically a decision
tree (DT). The classifier took a purely symbolic form of the
M-E Candidates that arrived in MTM as input, and output
an action map as described in Section V-F. Run on the same
data that was recorded during the experiments above, the DT
scored a perfect 100% in Task 1, with non-optimal behaviour
learned in only one trial. Interestingly in Task 2, the DT always
learnedGood behaviour in the key states, but made almost as
many mistakes on average as COIL (overall mean % correct
behaviour 70%).

In summary, we believe that COIL must be tailored to
deal with new discrete representations in order to make
further progress, also potentially reducing the complexity of
the matching and clustering algorithms inherited from CELL
which are designed to function in continuous metric spaces.

B. Scope Differences

CELL is designed to emulate early lexical learning, so the
task environment is expected to be constrained in certain im-
portant ways. One constraint that cannot easily be mapped into
the broader domain in which COIL is expected to operate is the
Recurrence Filtering constraint (see also Section V-D). This
limits CELL’s ‘attention span’ to about five consecutive LS-
events, and only word-concept pairs which recur within this
frame survive the filter. It is, of course, perfectly reasonable to
assume high-frequency repetition of keywords, given that the
recorded speech is infant-directed. However, our UT imitators
cannot always assume equivalent high-frequency repetition
of action-perception pairs during the completion of a task:
that quite depends upon the task. This begs the question of
whether learning UT entirely socially would require ‘infant-
directed violence’. Notably, some species of predator provide
their young with extra practice for the final (and thus, least
frequently occurring) stage of a hunt [10].

In our first implementation of COIL, we simply slackened
the constraint by extending the attention frame to cover a
‘large’ number of AP-events. In fact, we initially removed it
altogether, allowing the filter to compare each new AP-event

with all of those that had previously been added to STM,
but this proved too computationally inefficient. It may make
more sense to remove the filter altogether and replace it with
something more appropriate both to the learning problem and
to the new representations mentioned above. One possibility
is for short term memory to become some form ofepisodic
memory [44]–[46]. For example, rather than storing the past
five events, we might store an entire task-learning episode.
Each game could consist of a sequence of episodes where
different tasks are learned and perhaps returned to later. M-
E Candidates created from events stored in episodic memory
could then be stored in MTM for the duration of a game (or
possibly a fixed number of games), and LTM would hold M-E
Items generated during all the games of an agent’s lifetime.

Alternatively, episodic memory could be a new structure
designed specifically to deal with discrete representations
and replace both STM and MTM. An episode could be
represented as a list of observed co-occurring A-subevents and
P-subevents, with a count of the number of times that pair
recurred with the episode. That way, each AP-event could be
processed individually (ie. no pairwise comparisons would be
needed), potentially reducing the computational complexity of
the system as a whole. This is actually a reasonable match
to indexical theories of the hippocampus’ role in memory
[44], [46], [47]. These are best known for capacity reasons: a
sparsely encoded representation allows the retention of many
events in a finite neural memory. However, they provide the
extra (and perhaps more important) attribute of generalised
storage of commonly occurring events, which may thus ac-
cumulate more ‘weight’ in the representation (see Figure 1).
This sort of representation might also solve the problem of
assigning ‘nearness’ values statistically [48].

None of the above critique is aimed at discrediting Roy’s
application of CELL to the learning problem for which it
was designed. Rather, we simply call into question whether
program-level imitation is one of the ‘variety of domains’ [1,
p. 47] in which CELL is readily applicable. Roy makes no such
direct claim, of course, and it may be that with the alterations
given above and the extensions described in the next section
COIL can become a robust, working system, but that remains
to be seen.

VIII. D ISCUSSION

A. Scalability

So far we have only applied COIL to two relatively simple
‘local’ tasks carried out independently of each other. Even
these have highlighted some serious computational issues for
imitation learning, which we analysed in the previous section.
However, confronted with the ‘full’ world of UT, we think it
unlikely that even anideal version of COIL would succeed
in learning a correct behaviour across a range of tasks. This
is mainly due to the complexity of the perception space that
would make this possible. We’ve already established that the
number of executable actions is not a major issue, but in a flat
COIL architecture, every goal and ‘thing worthy of attention’
(including memory) in every conceivable in-game task would
necessitate its own perception channel.
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The solution to this problem is almost certainly some
system of different task-learning frameworks or spaces. To
again reference the biological solution, we know that in
rats the semantic referent of hippocampal ‘place’ cells are
dependent on the task the subject believes it is engaged in
[49]. Further, the developers of the two dominant cognitive
modelling tools, Soar and ACT-R, have found that creating
modular ‘work spaces’ is necessary for replicating human-
like learning [50], [51]. As we discussed in Section II-B,
we have some ideas about how to extend COIL to filter for
the effects of prioritisation between co-occurring perceptual
categories. However, this sort of mechanism would be limited
in its ability to combat combinatorics, so we will probably also
need a mechanism for creating new task contexts and swapping
attention to them for both learning and acting. Again, in real
life for a complex task, new recruits are generally trained on
one aspect of a job at a time.

B. The Correspondence Problem

We now return to the matter (first mentioned in Section II-
B) of the the correspondence problem [14]. The most obvious
version of the correspondence problem is trivial for ‘Virtual
Imitation’ — one bot imitates another identical bot, the
mapping should be one-to-one, and the discussion is over.
However, as our discussion of perception in the previous
section indicates, the correspondence problem goes far deeper
than simple body-part to body-part mappings. Taking the
whole system into account, the agentsare quite different,
particularly in the areas of perception and intelligent control.
The human’s actions (which guide the expert) are forcibly
mapped via the bot controller to an avatar, while COIL’s action
repertoire is restricted by and to the methods available in
the bot controller. It is at this early stage that the bulk of
action correspondence takes place, resulting in a near one-to-
one relationship in the bots, although there are some actions
which a human-controlled bot can take which are impossible
for an AI-controlled bot, such as following a curved path.

In perception, although the human has a broadly first-person
perspective (ie. from inside the expert bot’s head), the percep-
tion itself is not the same: the human makes decisions based
on visual cues displayed on the screen, and only perceives
relatively broad classes (such asto the left or through that
door). COIL has access only to its bot’s virtual sensors which,
although they attempt to give similar information to that
available to a human player via the screen, use fundamentally
different representations (ie. waypoints instead of walls /
doors, precise co-ordinates for location, etc.).

The point at which these perceptual correspondences are
smoothed over is also different. In designing the action chan-
nels and their classes, and then in building the behaviour
generator, we largely solve the action correspondence problem
for the agent, and like many researchers in AI we must be
deeply grateful to those in Natural Intelligence who are finding
justifications for the belief that these basic capacities do seem
to exist, at least in primates [15], [52]. But for perception,
the COIL system discovers its own correspondence. Indeed,
it may well find regularities that are not exactly the ones the

human expert saw, but which serve as adequate indicators to
shape a reasonable policy [53].

C. Comparison to Individual Learning

We now revisit the question raised at the end of Section
VI-A as to how COIL compares with individual trial-and-error
learning. Learning an optimal four-state, seven-action policy
(such as that required for Task 1) is not a difficult task for
most Reinforcement Learning algorithms, but it presumes the
existence of areward function [11]. In the absence of such a
function, an RL algorithm cannot converge upon a successful
policy, because it has no way of ascertaining which actions
are good or bad. It would be impossible for RL to learn
Task 1 without attaching a reward to collecting a health vial
(or a penalty for not collecting one), and thus adding prior
task knowledge to the agent8. The only true prior knowledge
built into COIL is that the expert is to be imitated, no matter
how intrinsically ‘rewarding’ that may or may not be. This all
assumes the environment is fully observable, and if this is not
the case then we venture into the realm of POMDPs [54], and
the complexity rises by an order of magnitude. Conversely,
we have shown COIL to operate in real-time in a partially
observable9 environment.

A promising research approach more similar to our own is
the work of a few researchers to add learning into complex
planning frameworksat the level of the planning. This has
been done on teleo-reactive plans in a flight simulator [55]
and on STRIPS-like plans in a ‘physics correct’ blocks-
world simulation [27]. Like our system, these require the
specification of a great deal of information about the action
and perceptual primitives in advance, but can then adjust this
information to learn a task. A full analysis of the power
and complexity of these various representations remains to
be done.

D. COIL for Robots

Another potentially interesting study would be to return
the COIL algorithm back to a robotic system, or at least
a more realistic / robotic simulation. Besides providing a
system of potential utility to real robotics, this would open
the way to examining the interaction between program-level
and action-level imitation. One problem that COIL as it stands
is completely incapable of solving is when two non-discrete
actions (that is, two actions requiring some duration such as
turning or moving forwards) must occur in a sequencewith
no change of perceptual context.While these sorts of events
may be rare in nature, it may also be that a solution to this
problem would be to learn the whole gesture as a single
action, triggered by the initial perceptual context. Although
there is evidence that many primates are capable of program-
level imitation [3], [56] apparently only humans are capable

8It could be argued that the biases built into COIL which afford a similar
representation of the task environment to the expert constitute prior task
knowledge. If this is the case, then that knowledge is at best rather weak
and implicit, unlike the explicit reward function of an RL algorithm.

9Recall that much of the UT game state is latent - see Section IV-B.
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of the sort of precise temporal representation found in action-
level imitation [57]. Perhaps the fact that we uniquely combine
these two capacities explains why ours is the only species with
rapidly accumulating culture.

IX. CONCLUSION

We have discussed why imitation matters — because social
learning is central to the intelligence of many species, and
because doing it quickly is critical in explaining the elabo-
rate behaviour humans express. We have related a language
learning model, CELL [1] to social learning in general and
presented a new learning system, COIL, that extends it to
the general problem of imitation learning. We have tested and
demonstrated this system on a real-time agent learning to cope
with a highly dynamic environment.

We are currently working on Bayesian neural network-based
techniques which have so far significantly improved upon the
efficiency and accuracy of COIL’s mutual information calcula-
tion algorithms. There is also potential for using Expectation
Items (thus far discarded) for both testing the correctness
of learned behaviour and longer-term planning, through their
predictive property. Enabling the imitator to automatically
switch between observing and acting modes (based upon some
confidence level) should yield interesting data regarding how
long certain parts of a task take to learn, and which take
multiple attempts to perfect. We may also add an individual-
learning module to COIL, to study the interplay between
individual and social learning. Scaling issues could be eased by
introducing independent sets of hierarchical perceptual classes,
allowing global and local goals to be dealt with separately.

Ultimately, our wish is to expose COIL bots to the rich
problem space of a full UT game world. It is our belief
that exploring the systemic and learning requirements for
such agents will give us major insights into the uses and
requirements of social learning.
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