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Abstract— This paper presents an imitation learning system wei ghts for percept-action pairs

capable of learning tasks in a complex dynamic real-time en- °
vironment. In this paper we argue that social learning should ®

be thought of as a special case of general skill learning, and
that the biases it presents to the skill learning problem radically

simplify learning for species with sufficient innate predisposition

to harness this power. We decompose skill learning into four
sub-problems, then show how a modification of Roy's CELL . N .
system [1] can address all these problems simultaneously. Our
system is demonstrated working in the domain of a real-time VR

game, Unreal Tournament.
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Index Terms— Program-Level Imitation, Social Learning, Rep-
resentation, Computer Games.

‘ sal i ent percept. classes ‘

I. INTRODUCTION

UMAN-like intelligence requires an enormous amount o o .
of knowledge — solutions to the hard problems of %é%%%%’////ﬁ%mm
survival and reproduction, which for our species have come to ordering of percept. classes / pairs
involve complex social and technological manipulations. Sorr&e 1. Task leaming requires leaming four types of things: relevant
of these solutions are passed to us genetically, and Somecé(%ggdries of actions, reglevacrln categories gf perceptpual contextg, éssociations
learned by an individual through trial and error. For humanBgtween these, and a prioritised ordering of the pairings. Assuming there is
one key source of knowledge is culture [2]. Bylture here no more than one action per perceptual class, qrdering the perceptual classes
. .ds sufficient to order the pairs. See text for details.

we mean any knowledge an agent derives from conspemﬁscs
by non-genetic means.

Social learningmay have evolved because it is safer than
individual learning. However, given the vast complexity and .
rapid change we observe in human culture, we might imagifie Requirements
it is also fundamentally morefficient at least for humans. There are at least four separate types of things that are
In order for this strategy of knowledge (or rather behavioulgarned in the process of learning a task (see Figure 1):
acquisition to be more efficient, the process of social acquisi-1) Perceptual classedVhat contexts are relevant to select-
tion for the average individual must be significantly less time  ing appropriate actions.
consuming than trial-and-error learning. 2) Salient actionsWhat sort of actions are likely to solve

In this paper we demonstrate how imitation learning can in  a problem.
fact provide the extra information a skill-learning algorithm 3) Perception-action pairingsWhich actions are appropri-
needs to converge quickly. We focus primarily on what Byrne  ate in which salient contexts.
and Russon callprogram-level imitation[3], that is, the  4) Ordering of pairings:It is possible that more than one
acquisition of complex skills through social learning, rather  salient perceptual class is present at the same time.
than theaction-level of fine, precisely-timed motor control In this case, an agent needs to know which one is
often emphasised in the robotics literature [4], [5]. In this most important to attend to in order to select the next
paper we begin by describing the requirements of social and  appropriate action.
skill Iearn_ing. We then present an imitatio_n Iearni_ng System, \with respect to perception / action pairings, our research
COIL, which we base on an existing real-time social learning primate task learning indicates that there should only be
system for robots, CELL [1]. We test COIL on two differeniyne action possible per salient perceptual context, but there
imitation tasks in the domain of a real-time VR garireal  may be many perceptual contexts in which a particular action
TournamentWe then analyse the complexity of the leaming,ay pe relevant [6], [7]. Also note that although we mention
issues we encounter, and discuss implications for real, fWarceptual contexts, we obviously do not mean the full context
time social learning systems like people. of all sensory information from a moment in time. Such a

Manuscript received 1 December, 2005; revised 1 May, 2006: revised@Presentation leads to a failure to generalise. Rather, detailed
August 2006. This work was supported by the EPSRC. perception at any particular moment tends to be focused on a
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few salient cues which will hopefully help disambiguate theausal links between perception and action. This satisfies the
current action-selection problem [8]. third sub-problem stated above. Note that finding suitable
Clearly solving four problems simultaneously makes learperception-action pairings both informs and is informed by
ing new skills a very hard problem, but equally it motivatethe process of finding salient perceptual classes. This indicates
social learning. In this paper we extend and analyse woattkat task learning is not a simple sequential process, but
showing that, in a social context, sensing and action categoriather consists of an ongoing process of gathering data, and
can be recognised by their co-occurrence [1]. It should albailding and testing models. Such solutions are common now
be possible to induce sequential and hierarchical ordering [B],machine learning [16], [17]
though we will not demonstrate that here. The final piece of the task learning puzzle, prioritisation,
requires that the imitator recognise which action is executed
when the environmental state simultaneously occupies multi-
ple perceptual classes. While we don’t demonstrate this here,
We describe the process of imitation learning using tweur latest work adapts a Bayesian technique caletbmatic
agents: theexpert demonstrates the completion of some tasiRelevance Determinatiofil8, p. 15] to rank these classes
and theimitator learns while observing the expert acting, theaccording to their bearing on observed action selection. Here
attempts to act in kind. We use the teexpert as it implies again co-learning priority should help facilitate and clarify
that the imitatee possesses skills worth acquiring, and that thejierwise noisy correlations for the other three classes of
will act broadly optimally (at least according to their owrlearning problem.
knowledge) when carrying out a task. We avoid the termsin theory then, imitation facilitates all four component
mode| because of potential ambiguity with the underlyingub-problems of task learning we described. Given some
learning model, andeachey because of the implication thatlevel of prior bias, the regularities expressed in the expert's
the imitatee is aware of and indeed actively assists the imitajsgrformance may provide enough information to sufficiently
[10], neither of which is necessarily the case. constrain the learning problem to the extent that even with
Learning by imitation imposes several constraints whialioise and ambiguity that result from being an external ob-
make the task-learning problem more tractable. For exampderver, the learner may learn faster with imitation than by trial
the imitator will observe a sequence of actions executed by tard error alone. What remains is to develop a learning system
expert while carrying out the given task. These actions forgpecifically geared towards picking up on those regularities. To
a subspace of the imitator's whole action space, thus reductng plausible, this learning system should work in real-time on
the search time for salient actions. In contrast, individugbntinuous-valued data for both sensing and acting. We now
learning strategies such as reinforcement learning [11] havelbgk at an existing language-learning robotic system which
definition the disadvantage of the agent having to execute sutisfies these desiderata, after which we will describe how it
action in order to discover its merit or, perhaps more cruciallshay be adapted for general-purpose task learning.
its demerit. In our application domain of Unreal Tournament,
this might amount to a bot having to kill a team-mate or fall 1. CELL: A WORKING LEARNING SYSTEM

into a ravine to receive the associated penalty and learn tha]i_h | | . ¢ . tion is Deb Rov’
this is a bad thing to do. Social learning therefore not on% € language-learning system In question 1S De oy's

B. Skill Acquisition via Imitation

provides for faster and more practical learning, but also f I;LLA(Ctr;Jss-channeEarlyt Lec>:<I|ECSILLearnc;ng.) syzt(:m [1]’| ¢
safer learning [12], [13]. Individual learning algorithms also! _]' s N€ hame Sugges S -- was designed fo emulate
require the existence ofraward function [11]. These are not IeX|_caI acquisition in mfants, specifically, to associate views of
always easily constructed (see Section VIII-C below). Socig|9ven target _ObJeCt with spoken vyords describing that object
learning of course on some lewequiresindividual learning; Roy’s experimental setup consisted of a camera mounted

here the reward function derives from replicating observed! N arpcu_lated robot arm which moved around an Ot.)JeCt 0
correlations. capture it visually from different angles. The sounds it was

This model of learning assumes of that imitators are ab%ain.ed on were th‘? utterances .Of a sgrigs of parents dgring
to map the expert’s actions into their own action space; thig>>1ons of _natur]a_\llnteractlon with _the|r infants, and _the|r
requires at least a partial solution to tl®rrespondence joint interaction with the target obJe(_:ts of the experiment,

This occurred independently of the picture data capture, and
evolved in nature or be built in Al than many more comple?be .parents were .not informed_that their _interqctions should
%chleve any specific goals. A noise-cancelling microphone was

reward functions. As we will see below, this does require -
q Lﬁg‘ed, and the utterances were subsequently digitally sampled

significant amount of endowed knowledge, though again thpT rocessing. The ciation of words to pictures was
is considerable evidence that such endowment has biologicoil processing. association ot words 1o pictures

equivalents [2], [15]. We discuss this further in Section VIII-BF;arrIGd out artificially by an analyst noting the period during

. . . which a certain object was the focus of attention, and then
Since we assume that the expert is performing some (possi-

) . . iopairing that period of sound with pictures of that object.
bly dynamic and hierarchically structured) sequence of actio . : . :
. he CELL learning model consists of five main stages (see
to the end of completing a task, we can also assume that . . : )
. . . . igure 2 and details below in Section V):
certain actions are more likely to precede, co-occur with or
follow certain environmental states. The imitator can use theseAt least, as natural as possible given the circumstances of a controlled

observed temporal relations to calculate the most probalagoratory experiment.
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Looking at language learning in this way, one could argue
that CELL is already capable of imitation learning, again in
a domain-restricted sense. Knowledge about how words and

[
Raw Sensor Data ‘

i Feature Extraction

Lochamnels - -e o mimimm oo o objects are linked is copied from external demonstrations of
S these links by an expert. However, language learning is clearly
4 Event Segmeniation a special case of social learning, in that inicessarilysocial,
L-events ——-m—l -— because a learned lexicon has much less utility outside of
Sevens 7T L the social conte#t There is no implication that the observed
i Co~oceurence Filtering behaviourof the expert (ie. holding up an object and repeating

LS—events r ‘ q its name) is particularly useful or should be generally adopted.

Also, in some ways, CELL is not sufficiently general for task-
i Recurrence Filtering learning. For example, language is by its nature sequential, but
Lexical candidates - - a task may require performing two actions simultaneously.

i Mutual Information Filtering IV. LEARNING SCOPE INDIFFERENTDOMAINS

Lexical items - These facts motivate our adaptation of CELL for application
to more generic imitation tasks. To differentiate our adapted
Fig. 2. The inputs and outputs of each stage of CELL (after Roy [1]). model from Roy’s original, we will refer to it a€OIL —
Cross-channeDbservation andmitation L earning.
To explain this adaption we need again to consider the more
1) Feature Extraction— salient features of the input sensogeneral definitions of perception and action, as described in
stream are extracted and isolated in separate Linguis§éction II-A. To model human-like learning, as Roy did, we

and Semantic datehannels have chosen to impose similar constraints upon the system
2) Event Segmentation- the channels are divided tempo-as would be present for human imitation. Specifically, we
rally into chunks calleceventsand subevents assume COIL is embedded in an embodied imitator agent

3) Co-occurrence Filtering— Linguistic and Semantic Which remotely observes an embodied expert agent acting in a
chunks which co-occur are linked together and storeéddared environment. Bearing in mind the goal of task learning
in a short-term memory buffer. by imitation, data gathered by the imitator can be categorised

4) Recurrence Filtering— any paired chunks which areinto two channel types: Action and Perception. The Action
repeated in close temporal proximity are extracted afiiannels receive data relating to the actions executed by the
stored in a mid-term memory buffer. These pairs a@xpert while completing the task. The Perception channels
lexical candidates receive data relating to the perception of the expert, which is

5) Mutual Information Filtering — cross-channel then used to determine the context of actions. Of course, the
Linguistic-Semantic mutual information is calculate¢ontext determining actions includes internal state unlikely to
for all lexical candidates. Those for which the value i€ observable by the imitator, as well as external state which,
sufficiently high are output (into a long-term memoryvhile visible, will not perfectly correspond to the expert's
buffer) aslexical items. view.

Comparing CELL with our task-learning model, we not%i As Roy points out [1, ch. 2], human infants possess innate

that Roy’s system also completes, in a domain-restricted sende>cs which make leaming tractable (see also [20]). This is

most of the sub-tasks we described. If we assume CEL[%?Iected in CELL by, for example, the extraction of shape and

colour characteristics from captured images, and the automatic

task is to assign spok’en wc_)rds to given wsua! 'T‘p“t' thencogn|t|on of phoneme boundaries. COIL is no different: the
we can think of CELL's action space as consisting of a . :

. - . : . success of the Feature Extraction and Event Segmentation
possible vocalisations, and its perception space as containin

: : : . stgges depend upon the imitator's biases to filter out extra-
all possible views (the converse is the case if we assume

[lgous sensor information and parse continuous behavioural

the task is to match objects to given speech). Cand|d7 rceptual data streams into representative categories [21].
perceptual classes (visual representations of object propertlﬁggs the data going into the ‘main’ processing stages of

are created by applying the Feature Extraction and Eve(gb”_ (Co-occurrence, Recurrence and Mutual Information

Segmentation stages of CELL to the camera data. A similer ) . : .
rocess applied to the microphone data discovers candid kléenng) consist of select, segmented Action and Perception
P Shannels. Details of these stages can be found below, but the

actions (strings of phonemes). Co-occurrence, Recurrence 0

. . - -
Mutual Information Filtering reduce these sets of candidatesY qu_est|on for now is: what is the output of the ”.‘Ode'- ,
In high-level terms, the resultant chunks stored in COIL's

to those which are highly salient for completing the givep . . .
X . o ongq—term memory buffer represent actions paired with percep-
task. Perception-action pairing also results from these sta%e

of processing. Finally, a prioritisation for the pairs may beoh=: Since the goal of an imitator is (presumably) to act, we

inferred from the mutual information value calculated durin((jOUId view these chunks as building blocks for a specification

C_ELL’S final -stgge: the higher the mutual information, the 2Though note again that the identification of salient categories implicit in
higher the priority. label learning may be useful to an agent, even if that agent never speaks.
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of imitated behaviour. If a given perception has been seengames. This is certainly not a new approach, and there are
instigate some action, this could be describednagivation. many Al researchers already working in this domain [28]-[31].
Conversely, if an executed action has been seen to bring abalthough games do avoid some of the technical problems of
some perceptual state, this could be ca@gectation Hence robots, they do introduce others. Again, perception and action
the output of COIL's fifth stage consists bfotivation Items may be far less reliable than for a skilled animal, and further
and Expectation Items which | henceforth refer to collec- they can be unreliable in ways that are bizarre by animal
tively asM-E Items. These chunks are similar to Drescher’standards (e.g. failure to report the presence of a wall blocking
context/action/resulschemas [22], except that COIL does noh movement.) However, they are real-time and highly dynamic
go so far as to merge its observeohtext/actionMotivation) environments which require the pursuit of multiple goals
and action/result (Expectation) pairs. The issue of decidinddefeating aggressive opponents, curing injuries, accumulating
how to act based upon M-E Items is beyond the scope wkapons and/or other tokens, rescuing innocents, assisting
CELL's original framework, but, since it is such a crucial pateammates). They contain both continuous and discrete actions
of the imitation process, we have added extra stages to CQlhd perceptions. Also, importantly, the are not constructed
specifically for this purpose (see Section V-F). by the experimenters as biased “toy” domains [32]. Rather,

Note that M-E Items correspond only to sense-action paitsey present tasks on a general-purpose platform that are
as described in our original model. Providing that perceptuethallenging for even human intelligence.
categorisation is strict enough so as to always create mutually\WWe now describe the game we have chosgmeal Tour-
exclusive perceptual categorisation, then prioritisation of tiament highlighting its suitability for our purposes.
pairs is unnecessary. If, however, in order to be generally
powerful and reusable M-E Itent sometimes include non-
exclusive perceptual state, then a prioritisation will have to
inferred. This again goes beyond the scope of CELL. Unreal Tournamen{UT) is a commercially released, multi-

In the next sections, we realise this abstract description giliyer ‘First Person Shooter’ [33]. As the term suggests, the
COIL. We first introduce our chosen task domain and theser has an agent's-eye view of the game and direct, real-time
initial test behaviours to be imitated therein. This is followedontrol of an avatar's actions. UT also supports remote control
by a detailed breakdown of each stage of the model, support#dagents by sending commands to the game server over a
by implemented examples, and contrasted with examples fremtwork. This provides a framework for allowing external
Roy’s implementation. programs to direct an agent’s actions. Such Al-controlled

agents are commonly known dmts in the literature and
A. The Real World, Robotics and Realistic Simulations gaming community. The game server, in turn, sends two

Much recent imitation research makes use of robots (or categories of sensor data back to the client. The first is
least robot simulators) as the platform to test new modedgnchronous: at regular intervals the client is informed of
and algorithms [23]-[25]. Robots have many advantages ¢ agent’s status (e.g. health, ammo, current weapon, etc).
experimental platforms: they operate in the real world, in redhe second is asynchronous: for example whenever a wall is
time and face many of the same problems as human imitatbtgmped, a footstep is heard or damage is taken.
while being able to exploit similar constraints (e.g. the physics UT offers the opportunity for real-time interaction and
of gravity, optics and impact). Robots like humans must delgiarning in a quasi-real-world environment. The game engine
with noisy and incomplete sensor information, imperfect motsimulates physics, albeit simplified, such as collisions (of
control, and dynamic, unpredictable surroundings. bounding polyhedra), gravity, and sound and light transmis-

On the other hand, many practical issues associated wéibn. The bots’ sensor data are incomplete in the sense that
robots can inhibit research. Robots may severely exaggeratdy a reduced subset of the game variables are observable;
the effects of noise since it is difficult to tune them to théhe bots have limited virtual sensors. For example, the imitator
precision achievable by a human infant learning hand-egannot know the health state of the expert, although this may
coordination. Maintaining them takes considerable cost amell affect the expert's choices. However, what sensors are
expertise that is orthogonal to artificial intelligence, ofteavailable are not subject to noise in the same way physical
requiring special technicians in the laboratory. As a reswdensors would be. Neither are bots hampered by imperfect
of these constraints, robot tasks seldom approach anythingtor control. In fact, low-level movement (ie. that of arms
like the complexity of animal behaviour. Animal behavioupor legs) is dealt with by the graphics engine, and bots can
is characterised by multiple, dynamic and conflicting goabnly be externally manipulated at a higher level (ie. move
in environments populated with agonistic agents. It also ferward or rotate). This may seem unrealistic to those familiar
characterised by phased or cyclic activity operating on multipleith fine gesture simulation (e.g. [34], but note that there is a
concurrent time courses. Because robot behaviour is currergiyod deal of neurological data indicating that the ‘higher’ level
so severely constrained, concentrating all research on thbsain functions we are presumably simulating (e.g. frontal
platforms can result in overlooking combinatorial issues ilobe control of behaviour) can also operate at a similar fairly
learning and action selection that might be quite accessiblegross abstract level [35], [36]). Much of the natural imitation
other platforms, such as artificial life [26], [27]. literature doesnot deal with precise replication of gesture

For this reason, we have opted for what we believe is[8 — or even using the same effector on an affordance.
‘best of both worlds’ domain: real-time 3D VR computefor example, Custancet al. describe agents that imitate a

l?é Unreal Tournament
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demonstrator pulling a peg out with fingers by pulling it ouf.. Feature Extraction

with their teeth [37]. ) i L The initial input into the first stage of the model is in the

In summary, we believe that UT is realistic enough to alloy, 1y, of raw data’ from the imitator bot's sensors. Each sensor
the study of human-like imitation, but simple enough to enablg,qje provides data about objects of note in the environment,
us to ggt at core Iearmng problems relatively quickly. To makfﬁecifically the imitator bot's own state, and the visible or
explaining the mechanics of th? _C_O“‘ model cIe.arer, we f|r§ dible state (such as location or actions) of other bots, items,
take a moment to set out the initial task behaviours that apons, navigation nodes, projectiles, etc. These data are
designed to test COIL's aptitude for imitation in this domain,-acted and / or merged into differesttannels Conversely,
We will then use these example tasks in the description of t&iyen channel should receive data pertaining to some specific

COIL algorithm. feature of interest in the environment. COIL allows a channel
to be one of two typesAction or Perception. Henceforth, we
C. The First Task Scenarios will use the termchannel setto refer to the group containing

UT ships with an environment editddnrealEd[38], which all channels of a given type.
we used to create game worlds containing (and, in fact,Our goal for Task 1 was to extract a minimal but sufficient
defined by) the features necessary to complete our initgdt of features to allow learning of the task. There were
tasks. These simplified domains are much like the simplifieghly two types of action necessary to complete the task
domains used by Roy [1] and many other developmentaffectively: turning and movirfy We thus needed to build
learning researchers. Forask 1, the expert demonstratorbiases for detecting these kinds of behaviour into our system
was a human-controlled bot, and the imitator was the COl(see Section 1V), and so created two Action channels: one
system ‘embedded’ in an Al-controlled bot. The imitator wafor monitoring rotation in the expert, and one for monitoring
programmed to follow the expert, remaining a fixed distaneaotion. Using a piece of memory state in the imitator bot,
behind and to one side, so as much perceptual informatime designed an algorithm to detect change in attitude of the
as possible was shared. The only data made availableeipert and output the signal to the rotation channel. A similar
the imitator was that received from its own sensors. Latealgorithm detected change in position relative to attitude and
variables within the expert (such as health) were invisible, jufstd that data into the motion channel.
as they are to humans playing the game. Due to the simplicity of the environment, only one type of

The environment itself was a single cuboid cavern alignggkrceptual information is required for completion of Task 1.
with the world axed Near each corner, equidistant from th&ve know that the only visible items are the vials to be
nearest two walls, was placedhealth vial. Such vials are collected, and that there are no other obstacles, so tracking the
visible both on screen and on sensors, provided they fakkaring of the nearest item to the centre of view is sufficient.
within a bot’s field of view yiew cong. Once picked up they This single Perception channel receives data from a more
disappear, reappearinge¢spawning after a short fixed time complex algorithm in the imitator bot which uses the item
interval. The task demonstrated by the expert was simply &ad bot sensors to calculate the relative bearing of each visible
locate and collect vials as quickly as possible. item to the expert, and returns the least of these.

The expert, imitator and cavern remained unchanged forRoy’s experiment utilised two sensors and a total of three
Task 2, but the health vials were replaced by a total of sixteathannels. Microphone data were fed into a single Linguistic
bots. These bots were recognisably from two different teamhannel ready for phoneme analysis. Camera data were fed
half were to be considered ‘friends’, and half ‘enemies’. Thigito two Semantic channels: one transformed into colour his-
task demonstrated was to locate and fire at enemy bots whigrams, and one into shape histograms. Using noisy physical
avoiding friendly ones. A bot which is hit by weapon fire takeas opposed to clean virtual sensors has disadvantages (see
damage, affecting its internal health score, and is ‘killed’ wheBection IV-A), but applying COIL to a real-world problem
this score reaches zero, disappearing from sensors. The tgevertheless an interesting open research area. As with
themselves were unarmed and posed no threat to either Hi®/s implementation, after feature extraction the relevant data
expert or the imitator. resided in three channels. The next stage is to separate the

A full account of the scope of these tasks to test the breadfileams into discrete events which will eventually form the
of COIL’s imitation abilities will be given in Section VI. First pasis for the desired M-E Items.
we describe the detail of COIL's modelling procedures in the
following section. i

B. Event Segmentation

V. THE COIL SYSTEM Once the relevant data have been diverted into channels,

Our first theoretical COIL model, as detailed below, is a§vo levels of event detection occur. Top-leestentboundaries
close an adaption as we found possible of CELL to a broad@tan the given channel set and are determined by a condition
imitation learning context. We now look at each stage in dept@n all these channelsimultaneouslyThe resulting chunks are
its input, its processes and its output. To aid understandi@own asA-eventsor P-events(depending upon the channel

we also explain how each stage was applied to Task 1, ¥} in question). Lower-levedegmentboundaries also span
compare it with Roy’s implementation. the channel set but, in contrast, are determined by conditions

330 the floor plane was horizontal and the walls were vertical. 4By movingwe mean translational movement along the floor plane.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—-PART B: CYBERNETICS, VOL. 37, NO. 1, JANUARY 2007 6

on each channelindividually. In other words, every channelthe entire timeline for the duration of each simulation, every
contributes segment boundaries that then span every otAeevent overlapped with at least one P-event, although the
channel in the same channel seisubeventsare consequently inverse was not necessarily the case. When a coincident pair
defined as any continuous sequence of segments within anwas found, they were copied to STM as &®P-event a
event, across any subset of Action channBlsubeventsare period of continuous action coupled with a period of uniform
analogously defined. perception.

The Feature Extraction process assigned representativRoy’s object view sets were timestamped, as were the utter-
‘labels’ (real numbers) to pre-defined classes within eaemces, which allowed overlap to be established. Consequently,
channel. For the rotation channel, the classes veneing an LS-event in his model consisted of a spoken utterance
anticlockwisgrepresented by-1), not rotating(0) andturning  paired with an object view set.
clockwise(1). For the motion channel, they wemving other
than forward (—1), not moving(0) and moving forward(1).
The bearing channel classes wa@items visiblg100), item
anticlockwise(—1), item ahead(0) anditem clockwisg1). In The arrival of an AP-event in STM initiates a comparison
addition to the choice of channels, the classes themselves 4%s8€ made between the new member and each of the existing
reflect the imitator’s innate knowledge brought to the task gtembers. The constituent A-events of the pair of AP-events
hand and provide a bias toward tractable learning. under comparison have already been subdivided into segments.

Given the data classes, designing event recognisers Wging some predefined metric on A-subevenls, every A-
relatively straightforward A-events (events which span the subevent from the new AP-event is compared with every A-
Action channels) were triggered by any change in expestibevent from the other. If the distance between them falls
bot state. In other words, an A-event started whenever thelow a predetermined threshold, then the two subevents
expert moved or turned (or both) and ceased when it stopp@fe marked as matching. The same process is carried out for
The gaps between A-events represented times in which frgubevents.
expert was still. A-event segment boundaries were triggeredGiven the matched pairs of subevents generated by the
by a change in state in either of the Action channels, f@bove process, the new AP-event is scanned for co-occurring
example: a change in the direction of motion from forward taatches. If a matched A-subevent coincides with a matched P-
strafing sidewaysP-events(events which span the Perceptiorsubevent, their partners in the other AP-event are checked for
channels) were triggered by any change in the bearing chang@ioccurrence. If they too coincide, then a recurrent match has
state. So if, for example, an item that was previously clockwiggen found. Such a match is used to creat®le Candidate,
of the expert becomes ahead, a new P-event commencedand these are stored in another buffietid Term Memory
our implementation, P-events formed a continuous sequen@4TM).
with the start of a new event triggering the end of the prior. An A-subevent in this instance is a continuous sequence of
No further segmentation of P-events occurred. motion and / or rotation segments. To measure the distance

Linguistic-event (L-event) boundaries in Roy’s model werbetween such segments, we defined the action distance metric
triggered by the commencement or cessation of speech inpotjially as follows:
and so the events themselves consisted of spoken utterances o
delimited by silence. Segment boundaries coincided with prob- do(z,y) = Z M (1)
able phoneme boundaries generated by a Recurrent Neural ceC C]

Network. Semantic-events (S-events) worked slightly dif‘fer-h d A-sub in A 6 is th f all
ently in that they were not temporal, but a collection of staiyneréx andy are A-subevents in A-space, is the set of a

pictures taken of the object in question from different angleghanr‘e'S spanned byandy, andz. andy. are the mean class

or object view sets As such, they had no constituent Seg\_/aIues for the given channelfor each respective subeven_t.
or example, let botlr andy be A-subevents representing

ments, and only contained subevents differentiated by channe'!: . . .
span, ie. colour and shape. This allowed Roy to control t tform clockwse_ trns. 50(5 = {£} (ust the rotation
complexity contribution from at least one channel, which w& annel)|C| =1, 2z =1 andgg = 1. Then we have:
could not. 11— 1|
da(a,y) = 5 =

C. Co-occurrence Hitering in other words, the two A-subevents are coincident in A-space.

Co-occurrence filtering is a simple procedure whiclf, however, we lety represent a uniform anti-clockwise turn
searches the segmented channel sets for A-events and P-eveat§, — —1), we have:

which overlap in time. Such a pair of co-occurring events is
termed anAP-event and shunted t&hort Term Memory do(z,y) 9 3)
(STM), which is implemented as a queue. AHY) = 1

All the channels receive data concurrently due to the imp_gypevents are blocks of uniform perception, and the percep-
tator’s fixed sensor cycle frequericySince P-events coveredion distance metric was defined similarly:

D. Recurrence Filtering

0 )

-1

5Again, this may not be as biologically implausible as it sounds; the brain
seems to also work to synchronise sensory input [39]. dp(z,y) = |yp — ZB| (4)
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No sum is necessary, since all P-subevents span and onl®) r, is increased until another A-prototype falls within the
span the bearing channel (B). The threshaldsind ¢, were A-unit.

initially both set at 0, so only coincident A- and P-subevents 3) The mutual information for this configuration of radii
were regarded as matching. Recall that AP-events in STM is calculated [1, chapter 3]. If it exceeds the previous
undergo recurrence filtering whenever a new AP-event arrives. maximum, then it is stored along with the current radii
When a pair of matching A-subevents co-occurs with a pair of  configuration.

matching P-subevents, then one of the A-subevents is taken a4) Steps 2 and 3 are repeated until every other A-prototype
representative and coupled with one of the P-subevents. This has been included in the A-unit.

couple is anM-E Candidate, which is then added to MTM.  5) r, is increased until another P-prototype falls within the
Examples of M-E Candidates could include a ‘clockwise turn’ P-categoryr, is reset to its initial state.

coupled with an ‘object clockwise’, and a ‘forward motion’ 6) Steps 2 to 5 are repeated until every other P-prototype

coupled with an ‘object ahead'. has been included in the P-category.
Bearing in mind that L-subevents in Roy’s implementation 7) Steps 1 to 6 are repeated for every M-E Candidate in
consisted of sequences of phonemes, the métticat he used MTM.

was an acoustic distance metric based on the likelihood thaB) If the maximum mutual information exceeds some
two sequences were generated by the same Hidden Markov predefined threshold, then the M-E Candidate and its
Model. He restricted the search by only comparing phoneme  optimal radii are used to create an M-E Item (see above).
sequences of less than one second duration containing at least This is stored iLong Term Memory (LTM). The M-E

one vowel. S-subevents were either colour or shape view Candidate, and all those that match the new M-E Unit,
sets in the form of histograms. The visual distance metric  are removed from MTM.

Used,ds, was based Upon Q.Q—test fOI’ hiStOgl’am S|m|lar|ty For Roy, an L_prototype was a phoneme Sequence in L-
The match thresholds were set relatively low, and so maggace, the space of all such sequences. An L-unit was therefore
Lexical Candidates were created. The metrics Roy selec@@;phere of phoneme sequences that ‘sound sufficiently like’
were well-established; unsurprisingly, there are no conventiopg prototype. An S-prototype was a colour or shape view set
for measuring the distance between two generic actionsiﬁrg_space, the space of all such view sets. An S-category
perceptions. Also, Roy assumed ‘close’ temporal proximity @fas thus a sphere of view sets that ‘look sufficiently like’
similar LS-events (justified by his study of highly repetitioushe prototype. So, a Lexical Unit was effectively a spoken
infant-directed speech), and implemented STM as a queuewfrd paired with a viewed object, both with allowances for
around just five items. We cannot make this assumption, iggividual variation. Roy used a linearly-interpolated prior to
action-perception pairs which arise from a task demonstratigmooth mutual information values for infrequently observed
could be separated by significant time intervals. Thus ophgjrs. Later versions of COIL included this function, and
STM was much bigger (typically 25 items), and this affectegyr |atest work explores alternatives to calculating mutual
efficiency (see also Section VII). information (see Section VII-B).

E. Mutual Information Filtering F. Generating Behaviour
Providing the number of Lexical Candidates in MTM ex-

need 1o be defined: ] _ i Therefore we have added modules to COIL to complete
« A-spaceand P-spaceare metric spaces with metrics  the ‘imitation loop’ — to facilitate acting upon acquired

andd, respectively. _ o behavioural knowledge. These modules, along with their the-
« An M-E Candidate is equivalent to a point in A-spaceyetical basis, are the subject of this section.
coupled with a point in P-space. These points are knownyye have seen how, through observing the completion of
as the candidate’d- and P-prototypes _ _agiven task by an expert, COIL can construct a ‘dictionary’
« An A-unit is a sphere in A-space of radius, With gescribing the apparent action-perception relationships that are
an A-prototype at its centreP¢categoriesare defined eqyired for, or are a consequence of, the completion of that

analogogsly). _ . task. However, the fundamental question of how to act upon
« An A-unit coupled with a P-category is called &E o454 knowledge remains, and is nontrivial. To answer this
Item. question, we need to consider what the resultant M-E Items

« An M-E Candidatematchesan M-E Item if the candi- represent in more detail.
date’s A-prototype falls within the item's A-unit, and the |, section IV, we suggested thanotivation implies a
candidate’s P-prototype falls within the item’s P'Catego%erception that triggers an action, aexbectatiorimplies an
And so, the algorithm runs as follows: action that predicts a perception. Recall that an M-E Item is
1) An M-E Candidate is selected. Its A-unit and P-categoan A-unit coupled with a P-category, and that these, in turn,
are initialised to have sufficiently small radii so as tare derived from an A-subevent which coincides with a P-
contain no other A- or P-prototypes. subevent. The priority of these subevents indicate whether a
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given M-E Item is in fact a Motivation or Expectation Item.
If the initiation of the corresponding P-subevgméecededhe B
A-subevent (the perception preceded the action), then it is a & = (0:05 X =1) +(0.05x 0) + (0.9 x 1) = 0.85  (5)

s an Expectation Item. ‘pure actions’) areturning anticlockwise(—1), not rotating

We discuss to what extent COIL solvescarrespondence (g) andturning clockwisg(1). So, the closest action farning

say that the expert and the imitator hasimilar embodiment
their avatars have identical body configurations in UT. This 1 _ _
being the case, we can assume that an imitator capable of 4a(085,1) = 1~ 0.85 = 0.15 ©)
discerning the perceptual state of an expert, can use the sarhe action selected for execution is therefewen clockwise
representation for its own perceptual state. This allows the ifhhe particular action classes that the imitator can recognise in
itator to search its acquired Motivation Items for those whicthe expert represent a bias in COIL for recognising actions in
match its state (via the P-category), and retrieve candiddie imitator's own repertoire. This can again be partly justified
actions for execution (via the A-unit). If the Motivation Itemsgdue to the similar embodiment of the imitator to the expert
cover the imitator's perception space, then the above methisee Section VIII-B). The commantlirn clockwise(with a
provides a complete specification for behaviour, albeit with garameter angle), for example, exists as a method in the bot
simple reactive mapping between state and action. Expectatiwmtroller module.
Items are not as obviously applicable in terms of determining For Task 1, the imitator was programmed to retrieve a new
action, and for Tasks 1 and 2 the reactive behaviour providedtion every time its perceptual state changed (checked at each
by Motivation Items alone has been adequate for effectig@nsor cycle), or to repeat the previous action if the state
imitation. We are currently exploring the potential for usingemained unchanged. We defined the actions typically to be
Expectation Items to test the correctness of learned behavighort and discrete (such asrn clockwise 20), for several
and for more complex planning in tandem with Motivatiorieasons:
Items (see Section IX), but for now we look at our basic action 1) The sensor cycle rate was slow enough that at maximum
selection method and its utility in completing Task 1. rotation velocity (for example), whole perceptual classes
Recall that the possible perceptual classes for Task 1 related could be turned through in between cycles, missing an
to the possible positions of the nearest item to the centre  opportunity to change course of action.
of the bot’s view coneno items visibleitem anticlockwisg 2) Most of the available bot commands must be given
item aheadand item clockwise Having observed the expert a numerical parameter, so true continuity of action is
collect vials for some period of time, the imitator switches difficult.
into acting mode and begins to ‘observe’ its own perceptual3) The game server requires some delay between com-
class instead of that of the expert. At the instance at which  mands. For example, trying to execute an action every
acting commences, the imitator searches LTM for Motivation sensor cycle is impossible.

ltems which match its current state. If there is more than ong.is quite possible to build apparent continuous motion out
the Motivation Item with the highest mutual information valugys smajl discrete ‘decisions’, particularly for embodied agents
attached to it is chosen. If none maich, then the imitator hgfere their physical plant does a certain amount of its own
not learned what to do in this circumstance; depending on figeqration, though it is also possible to build a system with
experrme_nter’s preference, it erther returns to observing, orjsgicated integration modules [40]-[43].
coerced into taking a random action in the hope of entering aClearly, the quality of the imitated behaviour depends upon
new perceptual class. o both the biases we have built into COIL for the task in
Having decided on a Motivation Item to ‘act upon’, the acgyestion, and the quality of the demonstration given. The next

tion that is ‘most representative’ of its component A-prototypP&action looks at our results in this area, the problems we have
is selected for execution. This is calculated by measuring t§€ercome. and those we are yet to.

distance between the A-prototype and contrived ‘pure actions’
(that is, a set of A-subevent¥] = {y;}, for which eachy; is
equal to an action class label — see Equation 1). The action
classes which are comparable depend upon which channelBrior to giving our experimental results, it would seem
are spanned by the A-prototype. The action closest to tAgpropriate to explain our choice of tasks in terms of hy-
A-prototype in A-space (measured using the action distangethesising COIL's ability to solve a wider range of imitation
metric in Equation 1) is then executed. problems.

For example, suppose that the selected Motivation ItemTask 1 is designed to be an elementary task to test the
contains an A-prototype recorded from the Rotation chanr@@rrect functioning of the different system components. Per-
only, where the expert turned clockwise for 90% of the tim&eption space is partitioned, so there are no concurrent com-
then paused for 5%, and finally turned anti-clockwise for 59p€ting perceptual classes. However, the observed actions (ie.

The mean rotation class value for this A-prototype is: turning and rotating) are real valued with varying duration and
may overlay multiple perceptual classes: they are not naturally

6Done manually, but could be made automatic - see Section IX. discrete. Also, the bots sense with respect to absolute (world)

VI. PRELIMINARY RESULTS
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TABLE | TABLE I
CORRECTBEHAVIOURS FORTASK 1 RESULTS FORTASK 1
Perceptual Class % correct behaviour
Policy | ltem_ Item 7 Item 7 ltem X Tactic | 100 75 50 25 0
Ol | TunX_ Movel Turn 7~ Turn 7 Ccw 5 3 2 0 0
02 | Tun_ MoveT Turn 7 Turn_ ACW 4 6 0 0 0
NO1l | Turn  Movel Turn 7~ Turn / Mix 5 5 0 0 0
NO2 | Turn Move T Turn_  Turn\_ Total | 14 14 2 0 0
Mean correct behaviour: 85%

co-ordinates; COIL must translate these readings into expert-
centric co-ordinates to allow easier recognition of the expert’s
objectives. Task 2 requires all of the above, but additionall . - . , . N

. : L - ... dnd with minimal w nergy’. The ‘non-optimal’ polici
COIL must arbitrate attention by prioritising multiply satisfie d wit al wasted ‘energy e non-optimal® policies

erceptual classes (see Section VI-B for examples). Task 91 and NO2 arise from the fact that turning clockwise
P P Pes). Is_equivalent to turning anticlockwisg60 — x)°. An agent

necgssn_ates .ﬁ“ng a weapon which, “although being mo ﬁopting either of these policies will be able to complete the
easily discretisable, introduces a new problem: such a shto

action could get lost or ianored amonast lon continuouarék’ but, unless the imitator and vials have a very specific
9 9 gs! g |ﬁi{ial configuration, time and energy is likely to be wasted
ones, especially when the sensor sampling only occurs

. S h th ion. A h li ill It
around 10Hz. We believe that most imitation problems cou} roug the extra rotation. Any other policy will result in an
iNability to complete the task.

be constructed by arbitrarily complex combinations of these i ) . . .
An experimental trial consisted of COIL observing, via

problems; the question of how well COIL will scale remains " )
g imitator bot, the demonstration of the task by a human-

to be investigated (see Section 1X). We now recap the speci‘ﬁ
requirements of each task in turn, and give the results %antroIIed bot for 60 seconds. As operators of the expert, we

COIL's learning efforts used three different ‘tactics’ to complete the task:

CW Tend to turn clockwise if no vials are visible.
A. Task 1 ACW Tend to turn anticlockwise.

At the highest level, the behaviour to be imitated in Task 1 Mix  No fixed tendency.

was to collect health vials. To achieve this, the imitator mom/e carried out ten trials for each tactic, for a total of 30 trials.
itored the rotation and motion of the expert, and the relatii discover the imitator’s learned behaviour, we queried the
position of the vials in the environment. There were thus tw@odel directly with the four perceptual classes, rather than by
Action channels rptation and motior) and one Perception observing the imitator act. Attempting the latter could have
channel pearing. Broadly speaking, actions were delimitedead to further error and subjectivity affecting the results.
by a change of direction (or cessation of motion), and percep-p ‘percentage correct behaviour' score was assigned to
tion by a change of perceptual class. A full specification Qfach trial, based on comparisons of the learned policy with
Task 1 can be found in the examples of Section V. each of the four correct policies, taking the greatest number
As previously mentioned, the Perception space of Task 1gf matched perception-action pairs. Each policy comprises of
divided into four mutually exclusive classaso items visible oyr pairs, so the possible scores are 0%, 25%, 50%, 75%
item anticlockwisg item aheadand item clockwise COIL g4 100%. Any behaviour which does not score 100% (ie.
ideally must acquire sufficient Motivation Items, by observing,nich mismatches all of the correct behaviours) will fail
the expert, to ‘cover’ this space with the correct actions {q the imitation task, but we have made no further attempt
complete the task. The actions recognised by COIL wefg; assess how ‘badly’ one behaviour performs compared to
turning clockwisgturning anticlockwisgnot turning moving  another, except by these percentage scores. We felt further
forward, moving other than forwardndnot movingIncluding analysis would cloud the results we have and introduce a

the possibility of a null assignment arising from a gap in grther unnecessary layer of human interpretation. The results
observed behaviour, there are therefore seven possible assiga-snown in Table 1.

ments to each perceptual class, giving 28 possible pairings an
16384 possible behavioymolicies where a policy is a set of
pairs covering all salient perceptual categori€f these, only

%lote that nearly half of the 30 imitators learned a fully
correct behaviour. The majority of the remainder formed only
- . one incorrect pair; two formed two incorrect pairs (our worst
four policies will correctly complete the task (see Table I). case). Additionally, 27 of the 30 learned policies matched

Policies O1 and O2 are “optimal’ inasmuch as an agen%ost closely to one of the optimal policies (15 matched O1,

acting accordingly will complete the task in minimal time, 4 11 02), with only 3 which more closely matched non-

"Moving other than forwarddoes not translate directly into an executableof:mmaI pO|ICIeS (2 matched NO1, and 1 NOZ)- Clearly, COIL
action. In our experiments, it was mapped nmve backwardbut never performs significantly better than random action allocation
appeared in any of the learned behaviour. Also, althomnghmoving not would, but what about individual Iearning methods, such as
turning and the null assignment all have the same practical outcome for the . e Thi L . .
imitator, as far as COIL is concerned, they are different actions, which is whyeinforcement Learning? This question is addressed in Section

we make the distinction above. VIII-C; for now we move onto the second task.
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TABLE Il
B. Task 2 RESULTS FORTASK 2

Until now, Task 2 has only been described in brief (see
Section IV-C), so the specification that follows adds enough Key state behaviours
detail to gauge COIL’s success, but omits the lowest level Tacic| G S T B | Mean % correct
technicalities. For this task, the expert aimed to seek and cw| 6 4 0 O 72
destroy ‘enemy’ bots, while avoiding ‘friendly’ bots. The ACW | 75 2 05 0 71
expert was armed, but the target bots were not. This time, the Mx | 8 1 1 0 65
environment was encoded by two Perception chanbelsting Total | 21.5 7 15 O 69

and affiliation. The bearing channel functioned analogously
to that in Task 1, replacing items with potential target bots.
The affiliation channel received a classification of the neard Good in the key states, turn toward a visible enemy, and
bot as eitherfriend, enemyor no target visible The Action turn (in either direction) when faced with a friend.
channels available to the imitator weratation (identical to ~ Each trial lasted as long as it took for the expert to eliminate
Task 1) andiring. The firing channel received a binary signal@ll the enemy bots, typically approximately 60 seconds. Tactics
firing or not firing. As per Task 1, A-events were delimited®W, ACW andMix were used analogously to Task 1, again
by absences of action, and A-subevents by a class chaM‘(j@‘ ten trials each for a total of 30. Results are shown in
on either A-channel. P-events were delimited by changes fable lll. Decimals arise from the fact that, for this task,
the affiliation of the nearest target bot, and further segment@@ximal mutual information was often shared by a number of
into P-subevents by changes of bearing class. The A_spéégtivation Items. Where the number of Motivation Items for
and P-space metrics were defined very similarly to Task @0 actions were equal, the action assignment for that percep-
with the notable exception of the firing channel: we defindg@l class was divided in two (clearly in practise, a method of
the distance betweefiring and not firing to be significantly selecting between these actions would need to be found). Note
farther than other distances, to reduce the probability that tiEt over two thirds of the bots tested performed correctly in
imitator would confuse the two states. the key states, and the remainder acquired a definite tendency
One of the key differences between the encoding of trR@ainst shooting friends. The mean behaviour correct score
task and the previous one is that there are now two Percepti¥as less for the Mix tactic, because the inconsistency in
channels concurrently receiving data. Therefore, there 4pENing direction provided fewer similar examples for the
three perceptual classefpéaring = BJ, [affiliation = A] and imitators to form a fully correct policy. . B
[bearing= B A affiliation = A]) concurrently applicable to the The clgar differentiation between firing at fnends an.d f.|r'|n'g
expert, as opposed to onfbgaring = BJ). COIL must learn at enemies show_s that COIL has succeeded in prl_ontlsm_g
to correctly prioritise these classes. For example, the imitagncurrently applicable perceptual classes. Combining this

. o N constructing more complex behaviours to solve hierarchically-
[bearing= ahead affiliation = enemy =- firing structured and multi-part tasks. On the other hand, the lack

COIL could, however, assigfiring to [affiliation = enemy, of perfect performance on_such se_emingly sir_npl_e problems,
which would result in the imitator opening fire before th&nd the fact that the algorithm as it stands will moiprove
target is in position, or tdbearing = ahead, which would performanc_e if it gets off to t_he wrong start in Iea.rnlng are
disastrously result in the imitator firing indiscriminately, aPOth troubling. We now consider the extent to which COIL
friends and enemies alike. (as an extension of CELL) is currently a plausible model for

There are (at least) two ways of defining correct behaviol#man-like imitation.
for this task. The first concentrates on the key states:

VII. ANALYSIS

Although COIL successfully learned some basic skills in

UT, a number of problems arose from our attempt to be as

These are key, because correct behaviour in these statefyiififul to the CELL template as possible. This in turn allows

most critical for completing the task. It is worth noting thaty,g g analyse our proposal of CELL as a model of social
although we use the termenemyand friend, to the imitator |earning, and discuss how combinatorial issues are likely to
they have no intrinsic meaning; they are just two differenfiect the component algorithms as the task scales. In this

types of target. We specify the four possible outcomes relatiggction we identify the problems and propose solutions.
to these states, in descending order of merit, as follows:

KS1 [bearing= aheadA affiliation = enemy
KS2 [bearing= aheadA affiliation = friend|

Good Fire at enemies, avoid friends. A. Representational Differences

Safe h Aqu bc;[h ﬁnem|e§ and ;n]?pdsd COIL's primary weakness has resulted from trying to ‘fit’
Trigger-happy F_|re at .Ot enemies and Irends. general representations of action and perception into spaces
Bad Fire at friends, avoid enemies.

designed for speech and vision.

The second way of defining correct behaviour is attempting CELL receives continuous microphone data, later converted
to define an optimal policy and then calculating percentagg#o discrete phonemes during Event Segmentation. COIL
correct, as in Task 1. An optimal policy for this task shouldeceives continuous action data which is parsed into discrete
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action segments. The crucial difference is betwdenspaces with all of those that had previously been added to STM,
in which these discrete objects .li&Ve omit the details of but this proved too computationally inefficient. It may make
Roy’s metric here, but intuitively phonemes can have infiniteiore sense to remove the filter altogether and replace it with
variation and can be mapped into a continuous space wheresheething more appropriate both to the learning problem and
notion of ‘nearness’ is well-defined. In contrast, the limited séb the new representations mentioned above. One possibility
of actions that can be initiated by a UT bot lie in a discretis for short term memory to become some formeglisodic
space where ‘nearness’ is not only hard to define but notmemory [44]-[46]. For example, rather than storing the past
particularly useful concept. For example, how fajuisip from five events, we might store an entire task-learning episode.
fire, and what use would that information be anyway? Each game could consist of a sequence of episodes where
Comparing Roy’s Semantic and our Perceptual Categoriégferent tasks are learned and perhaps returned to later. M-
another issue comes to light: segmentation of perceptida.Candidates created from events stored in episodic memory
Roy deals with this by providing CELL with a static setcould then be stored in MTM for the duration of a game (or
of images (see Section V-B), but there is no equivalent ggtessibly a fixed number of games), and LTM would hold M-E
around in COIL. Our system effectively forces the programméiems generated during all the games of an agent’s lifetime.
to segment perception space in advance through the hardAlternatively, episodic memory could be a new structure
coding of event and subevent triggers. These comparisatesigned specifically to deal with discrete representations
point toward using a more discrete, symbolic representatiand replace both STM and MTM. An episode could be
for both actions and perceptiokroughout COIL. This ar- represented as a list of observed co-occurring A-subevents and
gument is further strengthened by recent results we haResubevents, with a count of the number of times that pair
obtained using a symbolic classifier; specifically a decisiarcurred with the episode. That way, each AP-event could be
tree (DT). The classifier took a purely symbolic form of therocessed individually (ie. no pairwise comparisons would be
M-E Candidates that arrived in MTM as input, and outputeeded), potentially reducing the computational complexity of
an action map as described in Section V-F. Run on the sathe system as a whole. This is actually a reasonable match
data that was recorded during the experiments above, the @Tindexical theories of the hippocampus’ role in memory
scored a perfect 100% in Task 1, with non-optimal behavio{#4], [46], [47]. These are best known for capacity reasons: a
learned in only one trial. Interestingly in Task 2, the DT alwaysparsely encoded representation allows the retention of many
learnedGood behaviour in the key states, but made almost agents in a finite neural memory. However, they provide the
many mistakes on average as COIL (overall mean % correctira (and perhaps more important) attribute of generalised
behaviour 70%). storage of commonly occurring events, which may thus ac-
In summary, we believe that COIL must be tailored teumulate more ‘weight’ in the representation (see Figure 1).
deal with new discrete representations in order to maRdis sort of representation might also solve the problem of
further progress, also potentially reducing the complexity @fssigning ‘nearness’ values statistically [48].
the matching and clustering algorithms inherited from CELL None of the above critique is aimed at discrediting Roy’s
which are designed to function in continuous metric spacespplication of CELLto the learning problem for which it
was designedRather, we simply call into question whether
program-level imitation is one of the ‘variety of domains’ [1,

p. 47] in which CELL is readily applicable. Roy makes no such
CELL is designed to emulate early lexical learning, so thdirect claim, of course, and it may be that with the alterations
task environment is expected to be constrained in certain igiven above and the extensions described in the next section
portant ways. One constraint that cannot easily be mapped i@OIL can become a robust, working system, but that remains

the broader domain in which COIL is expected to operate is th@ be seen.

Recurrence Filtering constraint (see also Section V-D). This

limits CELL's ‘attention span’ to about five consecutive LS- VIII. DISCUSSION

events, and only word-concept pairs which recur within this -

frame survive the filter. It is, of course, perfectly reasonable f Scalability

assume high-frequency repetition of keywords, given that theSo far we have only applied COIL to two relatively simple

recorded speech is infant-directed. However, our UT imitatofiecal’ tasks carried out independently of each other. Even

cannot always assume equivalent high-frequency repetitithese have highlighted some serious computational issues for

of action-perception pairs during the completion of a taskmitation learning, which we analysed in the previous section.

that quite depends upon the task. This begs the questionHawever, confronted with the ‘full’ world of UT, we think it

whether learning UT entirely socially would require ‘infant-unlikely that even arideal version of COIL would succeed

directed violence’. Notably, some species of predator proviite learning a correct behaviour across a range of tasks. This

their young with extra practice for the final (and thus, leag mainly due to the complexity of the perception space that

frequently occurring) stage of a hunt [10]. would make this possible. We've already established that the
In our first implementation of COIL, we simply slackenecdhumber of executable actions is not a major issue, but in a flat

the constraint by extending the attention frame to cover @OIL architecture, every goal and ‘thing worthy of attention’

‘large’ number of AP-events. In fact, we initially removed it(including memory) in every conceivable in-game task would

altogether, allowing the filter to compare each new AP-evenécessitate its own perception channel.

B. Scope Differences
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The solution to this problem is almost certainly somAuman expert saw, but which serve as adequate indicators to
system of different task-learning frameworks or spaces. Bbape a reasonable policy [53].
again reference the biological solution, we know that in
rats the semantic referent of hippocampal ‘place’ cells are i . )
dependent on the task the subject believes it is engagedom Comparison to Individual Learning
[49]. Further, the developers of the two dominant cognitive We now revisit the question raised at the end of Section
modelling tools, Soar and ACT-R, have found that creatingl-A as to how COIL compares with individual trial-and-error
modular ‘work spaces’ is necessary for replicating humafearning. Learning an optimal four-state, seven-action policy
like learning [50], [51]. As we discussed in Section II-B{such as that required for Task 1) is not a difficult task for
we have some ideas about how to extend COIL to filter fonost Reinforcement Learning algorithms, but it presumes the
the effects of prioritisation between co-occurring perceptuakistence of aeward function [11]. In the absence of such a
categories. However, this sort of mechanism would be limitddnction, an RL algorithm cannot converge upon a successful
in its ability to combat combinatorics, so we will probably als@olicy, because it has no way of ascertaining which actions
need a mechanism for creating new task contexts and swappang good or bad. It would be impossible for RL to learn
attention to them for both learning and acting. Again, in redlask 1 without attaching a reward to collecting a health vial
life for a complex task, new recruits are generally trained dier a penalty for not collecting one), and thus adding prior
one aspect of a job at a time. task knowledge to the agénfThe only true prior knowledge
built into COIL is that the expert is to be imitated, no matter
how intrinsically ‘rewarding’ that may or may not be. This all
assumes the environment is fully observable, and if this is not

We now return to the matter (first mentioned in Section Ikthe case then we venture into the realm of POMDPs [54], and
B) of the the correspondence problem [14]. The most obviotilse complexity rises by an order of magnitude. Conversely,
version of the correspondence problem is trivial for ‘Virtualve have shown COIL to operate in real-time in a partially
Imitation” — one bot imitates another identical bot, thebservablg environment.
mapping should be one-to-one, and the discussion is overA promising research approach more similar to our own is
However, as our discussion of perception in the previotise work of a few researchers to add learning into complex
section indicates, the correspondence problem goes far degpignning frameworksat the level of the planningThis has
than simple body-part to body-part mappings. Taking thseen done on teleo-reactive plans in a flight simulator [55]
whole system into account, the agertse quite different, and on STRIPS-like plans in a ‘physics correct’ blocks-
particularly in the areas of perception and intelligent contravorld simulation [27]. Like our system, these require the
The human’s actions (which guide the expert) are forcibbpecification of a great deal of information about the action
mapped via the bot controller to an avatar, while COIL's actioand perceptual primitives in advance, but can then adjust this
repertoire is restricted by and to the methods available iformation to learn a task. A full analysis of the power
the bot controller. It is at this early stage that the bulk aind complexity of these various representations remains to
action correspondence takes place, resulting in a near onee-done.
one relationship in the bots, although there are some actions
which a human-controlled bot can take which are impossible
for an Al-controlled bot, such as following a curved path. D- COIL for Robots

In perception, although the human has a broadly first-personAnother potentially interesting study would be to return
perspective (ie. from inside the expert bot's head), the percehe COIL algorithm back to a robotic system, or at least
tion itself is not the same: the human makes decisions bagednore realistic / robotic simulation. Besides providing a
on visual cues displayed on the screen, and only perceieggtem of potential utility to real robotics, this would open
relatively broad classes (such #&s the leftor through that the way to examining the interaction between program-level
door). COIL has access only to its bot's virtual sensors whicland action-level imitation. One problem that COIL as it stands
although they attempt to give similar information to thais completely incapable of solving is when two non-discrete
available to a human player via the screen, use fundamentaltitions (that is, two actions requiring some duration such as
different representations (ie. waypoints instead of wallstiérning or moving forwards) must occur in a sequemdth
doors, precise co-ordinates for location, etc.). no change of perceptual context’hile these sorts of events

The point at which these perceptual correspondences aray be rare in nature, it may also be that a solution to this
smoothed over is also different. In designing the action chaproblem would be to learn the whole gesture as a single
nels and their classes, and then in building the behaviacagtion, triggered by the initial perceptual context. Although
generator, we largely solve the action correspondence problgtere is evidence that many primates are capable of program-
for the agent, and like many researchers in Al we must bevel imitation [3], [56] apparently only humans are capable
deeply grateful to those in Natural Intelligence who are finding
justifications for the belief that these basic capacities do seerfit could be argued that the biases built into COIL which afford a similar
f0 exist. al least in primates [15], [52], Bu for perceptiorfeeseniaon o L ask envionment [ e expert cortite bror o
the COIL system discovers its own correspondence. Indegfg implicit, unlike the explicit reward function of an RL algorithm.
it may well find regularities that are not exactly the ones the®Recall that much of the UT game state is latent - see Section IV-B.

B. The Correspondence Problem
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of the sort of precise temporal representation found in actiorig] M. A. Wood, J. C. S. Leong, and J. J. Bryson, “ACT-R is almost a model
level imitation [57]. Perhaps the fact that we uniquely combine
these two capacities explains why ours is the only species with
rapidly accumulating culture.

IX. CONCLUSION [7]

We have discussed why imitation matters — because socifl
learning is central to the intelligence of many species, ang
because doing it quickly is critical in explaining the elabo-

rate behaviour humans express. We have related a Iangu@g]e

learning model, CELL [1] to social learning in general an
presented a new learning system, COIL, that extends it [ta] R.S. Sutton and A. G. Bart®einforcement Learning: An Introductipn
the general problem of imitation learning. We have tested and

demonstrated this system on a real-time agent learning to copg

with a highly dynamic environment.
We are currently working on Bayesian neural network-based Approaches to Agent-Based Systems (FAABSZW)0.

techniques which have so far significantly improved upon the

13]

of primate task learning: Experiments in modelling transitive inference,”
in Proceedings of the Twenty-Sixth Annual Conference of the Cognitive
Science SocietyK. Forbus, D. Gentner, and T. Regier, Eds., Cognitive
Science Society. Chicago, lllinois, USA: Lawrence Erlbaum Associates,
Inc., August 2004, pp. 1470 — 1475.

J. J. Bryson and J. C. S. Leong, “Primate errors in transitive ‘inference’:
A two-tier learning model,’Animal Cognition 2006,in press

R. A. Rensink, “The dynamic representation of scen¥ssual Cogni-
tion, vol. 7, pp. 17-42, 2000.

R. Dawkins, “Hierarchical organisation: A candidate principle for ethol-
ogy,” in Growing Points in EthologyP. P. G. Bateson and R. A. Hinde,
Eds. Cambridge: Cambridge University Press, 1976, pp. 7-54.

T. M. Caro and M. D. Hauser, “Is there teaching in nonhuman animals,”
The Quarterly Review of Biologyol. 67, no. 2, pp. 151-174, June 1992.

ser. Adaptive Computation and Machine Learning. Cambridge, Mass.:
MIT Press (Bradford Book), 1998.

D. Gordon, “APT agents: Agents that are adaptive, predictable, and
timely,” in Proceedings of the First Goddard Workshop on Formal

M. Barley and H. W. Guesgen, EdSpring Symposium on Safe Learning
Agents AAAI, March 2002.

efficiency and accuracy of COIL's mutual information calculai4] C. L. Nehaniv and K. Dautenhahn, “The correspondence problem,” in
tion algorithms. There is also potential for using Expectation
Items (thus far discarded) for both testing the correctness
of learned behaviour and longer-term planning, through thgis] S. Hurley, “Active perception and perceiving action: The shared circuits
predictive property. Enabling the imitator to automatically

switch between observing and acting modes (based upon SQiRe

Imitation in Animals and Artifactsser. Complex Adaptive Systems,
K. Dautenhahn and C. L. Nehaniv, Eds. The MIT Press, 2002, ch. 2,
pp. 41-61.

model,” in Perceptual Experiengel. Gendler and J. Hawthorne, Eds.
Oxford University Press, 2005, ch. 6.
A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood

confidence level) should yield interesting data regarding how from incomplete data via the EM algorithmJournal of the Royal
long certain parts of a task take to learn, and which take Statistical Society series, Bol. 39, pp. 1-38, 1977.

learning module to COIL, to study the interplay between
individual and social learning. Scaling issues could be eased![b]

introducing independent sets of hierarchical perceptual classl§§1,

allowing global and local goals to be dealt with separately.

Ultimately, our wish is to expose COIL bots to the rich
problem space of a full UT game world. It is our beliePl]
that exploring the systemic and learning requirements fpr]
such agents will give us major insights into the uses a?zds]
requirements of social learning.
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