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Toward Behavioral
Intelligence in the
Semantic Web

R ealizing the Web’s full potential will
require more than rapid access to infor-
mation and services. It will also call for the
development and support of intelligent
schedulers, planners, and searchers that,

with minimal direction, can serve as an omnipresent
staff of advisers, secretaries, agents, brokers, and
research assistants. These intelligent agents will plan
everything from vacations to product development
cycles, taking over diverse mundane tasks and sub-
stantively assisting with sophisticated projects.

Electronic commerce has brought this vision tan-
talizingly near. Organizations and individuals have
connected an enormous variety of products and ser-
vices to the Internet, making them accessible to
browsers and other programs through simple com-
munication protocols.

How can the AI community build intelligent
agents to exploit these services? One approach is to
adapt intelligent agents to the Web as it now stands.
Agents must somehow understand Web pages in
ordinary language, taking into account the host of
other cultural protocols that reduce language ambi-
guities. With the current state of automated Web
translation, this approach is difficult: Translate “Put
my money in the Bank of Scotland” to Japanese and
put it back on AltaVista and you get “Put my money
on the Scottish Bank”—not an error a personal agent
should make.

A more reliable strategy is to change the Web itself,
making it accessible to existing knowledge repre-
sentation and reasoning techniques. In the semantic
Web of the not-too-distant future, service and content
providers will mark pages in accordance with stan-

dardized conventions designed to reduce ambiguity
and make automated reasoning easier.1,2 Thus, users
will be able to access Web resources by content rather
than keywords. If you search for a bank, you’ll be
able to specify whether you want a financial institu-
tion, a picturesque riverside, or a toy for a child.
What’s more, so will your agent.

DEVELOPING A DISTRIBUTED INTELLIGENCE
A significant limitation of both the current Web

and the first- generation semantic Web vision is that
both are primarily about publishing and retrieving
information. Neither concept explicitly recognizes
the vast array of tasks that users could accomplish
if the semantic Web becomes a distributed intelli-
gence that can actually get things done. 

We propose expanding the conceptual frame-
work that underlies the semantic Web to include
behavior in an integral way. This expansion will
help unlock the Web’s full potential by allowing it
to function not only as a knower, but also as some-
thing that can act on that knowledge.

Our agent-oriented approach to building the
semantic Web views a system as a collection of
agents—human-like actors with beliefs, intentions,
and abilities. This approach offers an intuitive way
to reason about systems,3 which makes it easier to
build them. Software engineers can reason about
large systems using the social skills our species has
been honing for thousands of years.4

Agent-oriented software engineering emphasizes
that the Web is not just about information; it’s
about services—about getting things done. The
Web connects to companies and organizations, peo-

The semantic Web should extend the intelligence of agents, not just their
knowledge. This agent-oriented design turns Web services into behavioral
modules, allowing Web agents to act in the real world.
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ple, devices, and software programs. Services are a
form of behavior, and, according to the Turing test,
behavior is the fundamental attribute of intelli-
gence. By connecting intelligent agents to these ser-
vices, we are not just giving agents more
information; we are giving them more behavior. We
are extending their intelligence so that they can
affect the real world.

Of course, agent-oriented software engineering
is far from trivial. To achieve this vision for the
semantic Web we need two things: a methodology
for building agents that can safely extend their
behavior and a way to mark up the semantic Web
to support this type of extension. 

To engineer extendable agents, we propose using
an agent-oriented approach to software engineer-
ing called Behavior-Oriented Design.5 BOD supplies
both modularity—permitting compartmentaliza-
tion—and mechanisms for intermodule coordina-
tion. The markup language we build on is a re-
finement of DAML-S (http://www.daml.org/
services/).6 DAML-S markup on services and BOD
modules lets a BOD agent make informed decisions
about service use. DAML-S also encodes the BOD
reactive plans that combine, control, and arbitrate
among these modules. The resulting agents are the
new semantic Web’s active intelligence.

BRINGING AGENTS TO THE WEB
DAML-S stems from the Defense Advanced

Research Projects Agency’s work to produce the
DARPA Agent Markup Language.7 DAML is itself
an extension of the Extensible Markup Language
and the Resource Description Framework, which
aim to provide better specifications of relationships
and ontologies within Web pages. The primary goal
is to add unambiguously interpretable semantics to
Web pages and thus enable the intelligent use of
resources on the Web. DAML-S is DAML devoted
to describing Web services. It will let users and soft-
ware agents automatically discover, invoke, com-
pose, and monitor Web resources that offer services,
under specified constraints.

Using a formal language like DAML-S offers
enormous benefits. Not only does it enable the pre-
cise selection of online services that are appropri-
ate for specific tasks, but it also opens the door to
powerful forms of reasoning about those services.8

Because its designers recognized the problem of
combining services, DAML-S already provides
most of the infrastructure to support our approach.
However, understanding the semantic Web as
active agent intelligence does require some refine-
ments to the current DAML-S specification. 

Any agent design methodology suitable to
exploiting discovered services must both
emphasize modularity and have some mech-
anism for coordinating modules. Using BOD,
designers develop modular agents in the
behavior-based tradition. To coordinate and
arbitrate among these modules, designers
build explicit, hand-coded reactive plans.
These reactive plans encode the agents’ (pos-
sibly conflicting) goals and their priorities.
For example, an agent may have the goal of
buying a plane ticket and of retaining a positive
balance in a bank account. Either of these goals
may in theory have higher priority; BOD’s reactive
plans let the agent’s designer specify which goal
does have priority and in what circumstances.
Meanwhile, the designer can encode the nitty-gritty
of pursuing the goal inside a software module. 

The BOD agent architecture is one of a number
that combine behavior-based AI and reactive plan-
ning.9 BOD’s agents differ from other hybrid archi-
tectures because BOD gives more power and
autonomy to the behavior modules and reduces the
need for plans to arbitrate among modules that vie
for resources. However, our proposals should apply
to a range of agent architectures.

SERVICES, AGENTS, AND BEHAVIOR
A Web service is any Web-accessible program or

device, and it may or may not affect the real
world.10 For example, a service that searches the
Web for research on Haiti changes only the agent’s
own knowledge state; a service to buy an airline
ticket debits the user’s charge account and enters
that user on the passenger list. Other examples of
Web services are a software company providing a
patch to fix a program, the police department send-
ing an officer to check a house in response to an
online burglar alarm, or a post office printing an
e-mail message and delivering it as surface mail. 

A composite service combines individual ser-
vices in a way that adds value to the user. An
example is a travel agency, where a customer spec-
ifies the preferred type of trip, and the travel agent
selects or assists in selecting specific service
providers, such as the airline and hotel. To com-
bine the simpler services of which it is composed,
a composite service typically has coordination or
arbitration rules that let it prioritize or make
tradeoffs, like booking an airline ticket to lock in
a good rate before fully investigating hotel
options. 

An agent is any relatively autonomous actor, typ-
ically with
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• goals, conditions it works to achieve or
maintain;

• intentions, goals and subgoals that it is
currently pursuing,

• beliefs, knowledge about the world,
which is necessarily limited and possibly
inaccurate; and

• behaviors, actions it can take.

Most people view agents as consumers of
services. However, in employing a service,

you are also, in a sense, acquiring new behavior.
For example, if you need to paint your house, you
can buy a brush or hire a painter. You can use either
to paint your house. Although you might not think
of a hired painter as part of yourself, the painter
helps you achieve your goal. Further, you must alter
your own plans to monitor the painter and to
accommodate his actions. The painter might even
help you store memories: Years later, when you
contact him for the paint brand and color, he can
supply it. 

So, as Andy Clark noted in Being There: Putting
Brain, Body and World Together Again (MIT Press,
Cambridge, Mass., 1996), things outside your per-
son may become a part of your agency. This is at
least as true for a software agent as it is for a human.

MODULAR AGENTS AND BOD
Modularity simplifies software engineering

because it lets designers decompose a complex pro-
gram into relatively simple modules. A program-
mer or designer can then develop and debug these
modules independently. Modularity underlies
object-oriented design as well as the behavior-based
approach to AI, which has become at least part of
many leading agent-architecture paradigms.9,11

Modularity generally simplifies design, but it also
creates two formidable challenges. One is decom-
position: how many modules and what resources
in each? The other is coordination. What if inde-
pendent components attempt contradictory behav-
ior? For example, what if a module dedicated to
charity and a module dedicated to housekeeping
both decide to make a major expenditure in the
same month? The overall system must have some
way to arbitrate between these modules and decide
which action will execute.

BOD, like object-oriented design, specifies that
modules group actions that require shared variable
state. Designers initially specify reactive plans as
simple sequences of actions that the agent can be
expected to take. BOD provides both a six-step
guide for initial decomposition and a cyclic devel-

opment process for actual implementation. The
development process features heuristics for reeval-
uating which parts of the agent’s intelligence the
designer should represent in separate behaviors and
which in the reactive plans. Consequently, the
agent’s structure stays as simple as possible while its
behavioral complexity increases.5

Applying BOD to semantic Web development
constrains some of this development process. On
the Web, services are the behavior modules—black
boxes from the perspective of any client agent,
either human or artificial. The agent can turn knobs
and switches (on a travel service, for example, it
can choose a date and destination), but it has no
control over how the module actually works.
Nevertheless, from the user’s perspective, agents
are in many respects just like behavior modules.
They provide “perceptual” information (tell you
the price or availability of a flight), perform actions
(sell you a ticket), and maintain state (remember
your itinerary).

MODULE COORDINATION
The most popular way to arbitrate behavior-

based modular systems is to incorporate hierarchi-
cal reactive plans into system execution.9,11 Reactive
planning addresses the problem of action selection
by looking up the next action based on the current
context, in contrast to deliberate or constructive
planning, which involves search and means-to-ends
reasoning. Reactive plans are established structures
that support the look-up process. Hierarchical reac-
tive plans are simple, robust plans, each element of
which may itself be another reactive plan.

BOD uses parallel-rooted, ordered slip-stack
hierarchical (POSH) reactive plans.12 At the root
of the plan hierarchy are the agent’s top-level goals.
For example, suppose Mojda has an agent with two
jobs: notify her of meetings and search the Web for
articles relevant to her research. The agent’s plan
hierarchy would have two root branches; the higher
priority goal (branch) would be monitoring her
schedule.

On every program cycle, a POSH agent’s coor-
dination module checks to see which root goal it
should attend to (as determined by priority, pre-
conditions, and optional scheduling). It then pur-
sues progress toward that goal, as determined by
the state of component behaviors and the last
action recorded in that branch of the POSH plan.

A coordination module pursues progress toward
a goal in several ways. First, a behavior module/Web
service may be making progress independently and
in parallel to the coordination module. In this case,
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the coordination module needs to determine merely
whether the behavior module is complete. 

Second, achieving the goal may require the agent
to perform actions in a set sequence. In this case,
the coordination module recalls its current place
within the sequence and triggers the next step. 

Finally, sometimes a goal requires that the agent
perform actions sequentially, but the exact sequenc-
ing cannot be determined in advance. In this case,
the designer supplies a basic reactive plan—an
elaborated sequence that incorporates production-
rule-like technology. The “How Basic Reactive
Plans Work” sidebar describes this briefly.

AGENT SUPPORT IN DAML-S
The semantic Web is Web intelligence waiting to

be discovered and incorporated by intelligent
agents. DAML-S has two roles in realizing that
vision. First, every service must be described in such
a way that an agent can know what it provides and
how to interact with it. Second, DAML-S provides
support for composite services, combinations of
simpler services—or behaviors—and the coordi-
nation mechanisms—or reactive plans—used to
combine those behaviors. 

Composite services
DAML-S composite services create reliable, uni-

form, higher-level subgoals and specify services that
can partially achieve these subgoals.1 For example,
if Mojda decides she needs a vacation, a composite
service lets her say, “Buy me a ticket from here to
Paris, respecting my usual preferences.” instead of
“Purchase AcmeAir Flight 309.”

You can view a composite service as a conven-
tional program or, more essentially, as another,
more powerful service. However, for our purposes,
it is more interesting to view a Web service as either
an agent in itself or as part of an agent—an exten-
sion an agent could incorporate into itself once it
finds and chooses to adopt a service.

One way an agent could interact with a com-
posite service is if the composite service itself
behaved as an agent. Suppose userAgent is an agent
serving a user. userAgent might discover and enlist
a number of compositeServiceAgents to provide a
particular service. Before making a final purchase,
userAgent can expect the compositeServiceAgents
to engage in a negotiation among themselves to
select the best offer, perhaps with the userAgent
serving as an auctioneer. 

An even more compelling scenario is if userAgent
can absorb the composite service directly as part of
userAgent’s intelligence. Because modules and ser-

vices are relatively autonomous in a BOD agent,
this requires only that the designer append the com-
posite service’s arbitration to userAgent’s reactive
plan hierarchy. Thus, in Mojda’s case, the
userAgent might be given a higher-level goal: “Get
Mojda somewhere nice as soon as possible with-
out overdrawing her checking account,” but be
given very little plan or module support for how to
succeed at this task. userAgent might then access
the Web and find a composite service that can plan
trips. It would then absorb the functionality of the
composite service plan into its own ontology—its
own goal and plan structure. 

The advantage of incorporating the composite
service as part of userAgent is that it gives
userAgent a finer granularity of control. For exam-
ple, userAgent might discover prices available at
multiple sites and hold transactions open in each
of them before making a decision about which to
terminate and which to accept. A userAgent seek-
ing the cheapest possible vacation might exploit
two composite services, “Buy me the cheapest
ticket” and “Rent me the cheapest accommoda-
tion.” The now-augmented userAgent might be
able to intervene in the workings of each compos-
ite service, altering and pruning each service’s
search space in light of the information gleaned
from the other.

The advantages are even greater if userAgent’s
designer can encode userAgent in the same for-
malism as the composite services. In this case, if the
userAgent has the capability to test or reason about
its own plan structures, it will be able to evaluate
composite services in these same terms. Informed
and possibly even secure choices among Web ser-
vice structures would be possible.
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How Basic Reactive Plans Work

A basic reactive plan is an elaboration of a simple sequence that
allows for a reactive response to dynamic environments. Execution of
a BRP can skip or repeat elements of the sequence as necessary. The
final (terminating) element has the highest priority. A precondition
guards each element, determining whether that element can execute.
Each program cycle of the behavior-arbitration module executes the
highest priority, currently executable element of the currently attended
BRP. A BRP step is a tuple of priority, releaser, and action. Each BRP
contains the small set of steps associated with achieving a particular
goal condition. The releaser for a step is a conjunction of Boolean per-
ceptual primitives that determines whether the step can execute. Each
action can be either another BRP or a more primitive plan element.

The releaser and priority determine the order in which plan steps
are expressed. If more than one step is operable, the priority deter-
mines which step executes. If no step can fire, the BRP terminates. The
top priority step of a BRP is often, though not necessarily, a goal con-
dition. In that case, its releaser recognizes that the BRP has succeeded,
and its action terminates the BRP.
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Describing services
As Figure 1 shows, at the highest level, DAML-

S aims to provide more opportunity to automate
all aspects of Web-based service provision and use.
To meet that goal, it organizes a service description
into three conceptual areas:6

The profile describes what the service does. It
characterizes the service for advertising, discovery,
and matchmaking—the kinds of information ser-
vice-seeking agents need.

The process model tells how the service works,
including information about the service’s inputs,
outputs, preconditions, and effects. It is also impor-
tant in composing and monitoring processes.

The grounding tells how an agent can access a ser-
vice. Typically, it specifies a communications proto-
col and provides details such as port numbers used
in contacting the service.

Once it selects a service, the agent uses its process
model and grounding to build a message sequence
for interacting with the service. The profile and
process model are abstract specifications, in that
they do not commit to any particular message for-
mat, protocol, or Internet address. The grounding
provides the concrete specification of these details.

Since the process model specifies the service

behavior, it is the foundation of intelligent Web ser-
vices and is of most interest to BOD. As Figure 2
shows, the model includes three types of processes:

• Atomic processes are the units of invocation.
From the service requester’s view, an atomic
process executes and returns in a single step.

• Simple processes are like atomic processes in
that the requester perceives them as having sin-
gle-step executions. Unlike atomic processes,
however, the requester cannot invoke them
directly, and they are not associated with a
grounding. Simple processes provide abstract
views of atomic or composite processes.

• Composite processes are constructed from sub-
processes, which can be either atomic, simple, or
composite. Designers use control constructs to
specify the structure of a composite process.

Control constructs are compound structures, usu-
ally composed of conditions and process compo-
nents, which in turn can be either processes or
control constructs. For example, the control con-
struct If-Then-Else contains a condition and two sub-
processes, one of which executes when the condition
is true and the other when the condition is false.

Figure 1. Upper level
of the DAML-S ser-
vice ontology. To
automate Web-
based service provi-
sion and use, the
ontology organizes
service descriptions
into three
categories.
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EXTENDING DAML-S
Viewing the semantic Web as containing intelli-

gence rather than just knowledge provides a new per-
spective for semantic Web languages like DAML-S. 

We propose a number of DAML-S extensions,
and we believe that these insights apply to other
semantic Web ontologies as well. We also believe
that encoding both agents and services in the same
way is the easiest and most thorough way to
achieve our vision. Consequently, these recom-
mendations are for supporting userAgents as well
as conventional Web services.

Data
Data is key to modularity and agent design, yet it

is not currently part of the DAML-S ontology. Some
data is an integral part of an agent itself such as the
agent’s current decision history or its progress in a
search. Other data is maintained in service modules,
such as airline ticket prices or even the userAgent’s
itinerary. Data recovery characteristics, particularly
after failures or crashes, should be indicated using
a functional attribute of the DAML-S service profile.

Primitives
Real-time system primitives can behave in two

ways. A primitive can compute and return an
answer, taking an arbitrarily long time to complete.
Or a primitive can trigger a process to run, return-
ing only success or failure in starting the process,
leaving the calling program to check whether the
process has completed and for any results. 

BOD currently uses a hybrid of these approaches.
Technically it uses the former (blocked) primitive
call, but it expects the module to have an answer
ready immediately. Under BOD, behavior modules
normally provide an anytime response.13 Basic ser-
vices in DAML-S should specify their expected
return time and values, possibly guaranteeing time-
outs if requested.

Sequences
A sequence’s behavior depends on the nature of

its primitives. BOD’s action selection has two
sequence types: a trigger sequence, which expects
extremely rapid responses from all its elements and
executes within a single planning cycle, and an
action pattern, which allows for context-checking
and reallocation of control priority between every
element. Both sequence types abort if one of their
elements returns a failure.

DAML-S includes a sequence subtype, but it does
not indicate whether sequences can be interrupted.
Also, in DAML-S, sequence elements themselves can

be subprocesses (simple or composite), which
implies that the sequence type can only be
slow, like a BOD action pattern. DAML-S
should incorporate atomic sequencing like
BOD’s trigger sequences and specify condi-
tions and mechanisms for premature termi-
nation.

Basic reactive plans
Often in a dynamic environment, action

selection is too nondeterministic for sequences
to direct it. Nevertheless, focusing on a par-
ticular subset of an action repertoire is a more
efficient and effective way to complete tasks. A basic
reactive plan  provides an organized way to apply
a subset of actions until the module achieves a goal.
DAML-S does not currently support the expression
of a BRP directly, although developers can build
BRPs from a repeat-while statement and cascading
If-Then-Elses. For clarity, though, DAML-S should
support BRPs directly as a composition construct.

Agent-level control
The root of a BOD reactive plan hierarchy is a

set of goals that a module checks every time step. A
real-time agent requires such a mechanism for mon-
itoring its environment (including itself) to deter-
mine whether one of its high-level goals has become
urgent and should determine its current intentions.
BOD’s action selection uses an extended version of
the BRP for this purpose.9,12 DAML-S should also
include an agent-level control construct.

T he Web is already a storehouse of behavioral
intelligence that provides users, at browsers,
with knowledge and abilities. While sitting at

their desks, users can move people, objects, and
information across the planet. The semantic Web
will empower users even more. They will be able
to exploit intelligence agency, as well as real ser-
vices, from their desktops. �
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